Engineering Mechanics

(Joyce) #1

  1. Helical Springs and Pendulums 528–


26.1. Introduction. 26.2. Helical Springs. 26.3. Helical Springs in Series
and Parallel. 26.4. Simple Pendulum. 26.5. Laws of Simple Pendulum.
26.6. Gain or Loss in the No. of Oscillations due to Change in the Length
of String or Acceleration due to Gravity of a Simple Pendulum.
26.7. Gain or Loss in the No. of Oscillations due to Change in the Position
of a Simple Pendulum. 26.8. Compound Pendulum. 26.9. Centre of
Oscillation (or Centre of Percussion). 26.10. Conical Pendulum.


  1. Collision of Elastic Bodies 553–


27.1. Introduction. 27.2. Phenomenon of Collision. 27.3. Law of
Conservation of Momentum. 27.4. Newton’s law of Collision of Elastic
Bodies. 27.5. Coefficient of Restitution. 27.6. Types of Collisions.
27.7. Direct Collision of Two Bodies. 27.8. Loss of Kinetic Energy During
Collision. 27.9. Indirect Impact of Two Bodies. 27.10. Direct Impact of a Body
with a Fixed Plane. 27.11. Indirect Impact of a Body with a Fixed Plane.


  1. Motion Along a Circular Path 572–


28.1. Introduction. 28.2. Centripetal Acceleration. 28.3. Centripetal Force.
28.4. Centrifugal Force. 28.5. Centrifugal Force Acting on a Body
Moving Along a Circular Path. 28.6. Superelevation. 28.7. Effect of
Superelevation in Roadways. 28.8. Effect of Superelevation in Railways.
28.9. Equilibrium Speed for Superelevation. 28.10.Reactions of a
Vehicle Moving along a Level Circular Path. 28.11. Equilibrium of a
Vehicle Moving along a Level Circular Path. 28.12. Maximum velocity to
Avoid Overturning of a Vehicle Moving along a Level Circular Path.
28.13. Maximum Velocity to Avoid Skidding Away of a Vehicle Moving
along a Level Circular Path.


  1. Balancing of Rotating Masses 586–


29.1. Introduction. 29.2. Methods for Balancing of Rotating Masses.
29.3. Types of Balancing of Rotating Masses. 29.4. Balancing of a Single
Rotating Mass. 29.5. Balancing of a Single Rotating Mass by Another
Mass in the Same Plane. 29.6. Balancing of a Single Rotating Mass by
Two Masses in Different Planes. 29.7. Balancing of Several Rotating
Masses. 29.8. Analytical Method for the Balancing of Several Rotating
Masses in one Plane by Another Mass in the Same Plane. 29.9. Graphical
Method for the Balancing of Several Rotating Masses in One Plane by
Another Mass in the Same Plane. 29.10. Centrifugal governor.
29.11. Watt Governor.


  1. Work, Power and Energy 599–


30.1. Introduction. 30.2. Units of Work. 30.3. Graphical Representation of
Work. 30.4. Power. 30.5. Units of Power. 30.6. Types of Engine Powers.
30.7. Indicated Power. 30.8. Brake Power. 30.9. Efficiency of an Engine.
30.10. Measurement of Brake Power. 30.11. Rope Brake Dynamometer.
30.12. Proney Brake Dynamometer. 30.13. Froude and Thornycraft
Transmission Dynamometer. 30.14. Motion on Inclined Plane.
30.15. Energy. 30.16. Units of Energy. 30.17. Mechanical Energy.
30.18. Potential Energy. 30.19. Kinetic Energy. 30.20. Transformation of
Energy. 30.21. Law of Conservation of Energy. 30.22. Pile and Pile Hammer.


  1. Kinetics of Motion of Rotation 622–


31.1. Introduction. 31.2. Torque. 31.3. Work done by a Torque.
31.4. Angular Momentum. 31.5. Newton’s Laws of Motion of Rotation.
31.6. Mass Moment of Inertia. 31.7. Mass Moment of Inertia of a Uniform
Thin Rod about the Middle Axis Perpendicular to the Length.
31.8. Moment of Inertia of a Uniform Thin Rod about One of the Ends
Perpendicular to the Length. 31.9. Moment of Inertia of a Thin Circular
Ring. 31.10. Moment of Inertia of a Circular Lamina. 31.11. Mass Moment
of Inertia of a Solid Sphere. 31.12. Units of Mass Moment of Inertia.
31.13. Radius of Gyration. 31.14. Kinetic Energy of Rotation.
(xi)
Free download pdf