Engineering Mechanics

(Joyce) #1

  1. Relative Velocity 400–


19.1. Introduction. 19.2. Methods for Relative Velocity. 19.3. Relative
velocity of Rain and Man. 19.4. Relative Velocity of Two Bodies Moving
Along Inclined Directions. 19.5. Least Distance Between Two Bodies
Moving Along Inclined Directions. 19.6. Time for Exchange of Signals of
Two Bodies Moving Along Inclined Directions.


  1. Projectiles 417–


20.1. Introduction. 20.2. Important Terms. 20.3. Motion of a Body Thrown
Horizontally into the Air. 20.4. Motion of a Projectile. 20.5. Equation of
the Path of a Projectile. 20.6. Time of Flight of a Projectile on a Horizontal
Plane. 20.7. Horizontal Range of a Projectile. 20.8. Maximum Height of
a Projectile on a Horizontal Plane. 20.9. Velocity and Direction of Motion
of a Projectile, After a Given Interval of Time from the Instant of Projection.
20.10. Velocity and Direction of Motion of a Projectile, at a Given Height
Above the Point of Projection. 20.11. Time of Flight of a Projectile on an
Inclined Plane. 20.12. Range of a Projectile on an Inclined Plane.


  1. Motion of Rotation 445–


21.1. Introduction. 21.2. Important Terms. 21.3. Motion of Rotation Under
Constant Angular Acceleration. 21.4. Relation Between Linear Motion
and Angular Motion. 21.5. Linear (or Tangential) Velocity of a Rotating
Body. 21.6. Linear (or Tangential) Acceleration of a Rotating Body.
21.7. Motion of Rotation of a Body under variable Angular Acceleration.


  1. Combined Motion of Rotation and Translation
    457–
    22.1. Introduction. 22.2. Motion of a Rigid Link. 22.3. Instantaneous
    centre. 22.4. Motion of a Connecting Rod and Piston of a Reciprocating
    pump. 22.5. Methods for the Velocity of Piston of a Reciprocating Pump.
    22.6. Graphical Method for the Velocity of Piston of a Reciprocating
    Pump. 22.7. Analytical Method for the Velocity of Piston of a Reciprocating
    Pump. 22.8. Velocity Diagram Method for the Velocity of Piston of a
    Reciprocating Pump. 22.9. Motion of a Rolling Wheel Without Slipping.

  2. Simple Harmonic Motion 470–


23.1. Introduction. 23.2. Important Terms. 23.3. General Conditions of
Simple Harmonic Motion. 23.4. Velocity and Acceleration of a Particle
Moving with Simple Harmonic Motion. 23.5. Maximum Velocity and
Acceleration of a Particle Moving with Simple Harmonic Motion.


  1. Laws of Motion 481–


24.1. Introduction. 24.2. Important Terms. 24.3. Rigid Body.
24.4. Newton’s Laws of Motion. 24.5. Newton’s First Law of Motion.
24.6. Newton’s Second Law of Motion. 24.7. Absolute and Gravitational
Units of Force. 24.8. Motion of a Lift. 24.9. D’Alembert’s Principle.
24.10. Newton’s Third Law of Motion. 24.11. Recoil of Gun.
24.12. Motion of a Boat. 24.13. Motion on an Inclined Planes.


  1. Motion of Connected Bodies 503–


25.1. Introduction. 25.2. Motion of Two Bodies Connected by a String
and Passing over a Smooth Pulley. 25.3. Motion of Two Bodies Connected
by a String One of which is Hanging Free and the Other Lying on a
Smooth Horizontal Plane. 25.4. Motion of Two Bodies Connected by a
String One of which is Hanging Free and the Other Lying on a Rough
Horizontal Plane. 25.5. Motion of Two Bodies Connected by a String
One of which is Hanging Free and the Other Lying on a Smooth Inclined
Plane. 25.6. Motion of Two Bodies connected by a String, One of which
is Hanging Free and the Other is Lying on a Rough Inclined Plane.
25.7. Motion of Two Bodies Connected by a String and Lying on Smooth
Inclined Planes. 25.8. Motion of Two Bodies Connected by a String Lying
on Rough Inclined Planes.
(x)
Free download pdf