# Engineering Mechanics

(Joyce) #1

1. Moment of Inertia 100–
7.1. Introduction 7.2. Moment of Inertia of a Plane Area 7.3. Units of
Moment of Inertia 7.4. Methods for Moment of Inertia 7.5. Moment of
Inertia by Routh’s Rule 7.6. Moment of Inertia by Integration 7.7. Moment
of Inertia of a Rectangular Section 7.8. Moment of Inertia of a Hollow
Rectangular Section 7.9. Theorem of Perpendicular Axis 7.10. Moment
of Inertia of a Circular Section 7.11. Moment of Inertia of a Hollow
Circular Section 7.12. Theorem of Parallel Axis 7.13. Moment of Inertia
of a Triangular Section 7.14. Moment of Inertia of a Semicircular Section
7.15. Moment of Inertia of a Composite Section 7.16. Moment of Inertia
of a Built-up Section

2. Principles of Friction 124–
8.1. Introduction 8.2. Static Friction 8.3. Dynamic Friction 8.4. Limiting
Friction 8.5. Normal Reaction 8.6. Angle of Friction 8.7. Coefficient of
Friction 8.8. Laws of Friction 8.9. Laws of Static Friction 8.10. Laws of
Kinetic or Dynamic Friction 8.11. Equilibrium of a Body on a Rough
Horizontal Plane 8.12. Equilibrium of a Body on a Rough Inclined Plane
8.13. Equilibrium of a Body on a Rough Inclined Plane Subjected to a
Force Acting Along the Inclined Plane 8.14. Equilibrium of a Body on a
Rough Inclined Plane Subjected to a Force Acting Horizontally
8.15. Equilibrium of a Body on a Rough Inclined Plane Subjected to a
Force Acting at Some Angle with the Inclined Plane

3. Applications of Friction 149–
9.1. Introduction. 9.2. Ladder Friction. 9.3. Wedge Friction. 9.4. Screw
Friction. 9.5. Relation Between Effort and Weight Lifted by a Screw Jack.
9.6. Relation Between Effort and Weight Lowered by a Screw Jack.
9.7. Efficiency of a Screw Jack.

4. Principles of Lifting Machines 171–

``````10.1. Introduction 10.2. Simple Machine 10.3. Compound Machine
10.4. Lifting Machine 10.5. Mechanical Advantage. 10.6. Input of a
Machine 10.7. Output of a Machine 10.8. Efficiency of a Machine
10.9. Ideal Machine 10.10. Velocity Ratio 10.11. Relation Between
Efficiency, Mechanical Advantage and Velocity Ratio of a Lifting Machine
10.12. Reversibility of a Machine 10.13. Condition for the Reversibility
of a Machine 10.14. Self-locking Machine. 10.15. Friction in a Machine
10.16. Law of a Machine 10.17. Maximum Mechanical Advantage of a
Lifting Machine 10.18. Maximum Efficiency of a Lifting Machine.``````

1. Simple Lifting Machines 185–
11.1. Introduction 11.2. Types of Lifting Machines 11.3. Simple Wheel
and Axle. 11.4. Differential Wheel and Axle. 11.5. Weston’s Differential
Pulley Block. 11.6. Geared Pulley Block. 11.7. Worm and Worm Wheel
11.8. Worm Geared Pulley Block.11.9. Single Purchase Crab Winch.
11.10. Double Purchase Crab Winch. 11.11. Simple Pulley. 11.12. First
System of Pulleys.11.13. Second System of Pulleys. 11.14. Third System
of Pulleys. 11.15. Simple Screw Jack 11.16. Differential Screw Jack
11.17. Worm Geared Screw Jack.

2. Support Reactions 217–

``````12.1. Introduction. 12.2. Types of Loading. 12.3. Concentrated or Point