LEIBNITZ’S RULE
z If f(x) is continuous and u(x), v(x) are differentiable
functions in the interval [a, b], then,
d
dx ftdt fvx
d
dxvx f ux
d
ux dxux
vx
()( ) { ( )} { ( )} { ( )} { ( )}
()
∫ = −
z If the function φ(x) and Ψ(x) are defined on [a,b]
and differentiable at a point x ∈(a, b) and f(x, t) is
continuous, then,
d
dx
fxtdt d
dx
fxtdt dx
x dx
x
x
x
() (,) (,) ()
()
()
()
φφ
ΨΨ Ψ
∫∫
⎡
⎣⎢
⎤
⎦⎥=+
⎧
⎨
⎩
⎫⎫
⎬
⎭
×
fx x dx
dx
(, ())Ψ−φ()fx x(, ())φ
APPLICATION OF INTEGRALS
(i) The area bounded
by the curve y = f(x),
the x-axis and the lines
x = a and x = b is
Afxdx
a
b
=∫|()|
(ii) The area bounded
by the curves y = f(x),
y = g(x) and the lines
x = a and x = b is
Afxgxdx
a
b
=∫|() ()|−
(iii) The area bounded
by the curve x = f(y),
the y-axis and the lines
y = c and y = d is
Afydy
c
d
=∫|()|
(iv) The area bounded
by the curves x = f(y)
and x = g(y) and the
lines y = c and y = d is
Afygydy
c
d
=∫|() ()|−
PROBLEMS
Single Correct Answer Type
- sin
sin( )
x
x
dx
−
∫ =
α
(a) xcosα – sinα logsin(x – α) + c
(b) xcosα + sinα logsin(x – α) + c
(c) xsinα – sinα logsin(x – α) + c
(d) None of these
- cos
cos
21
21
x
x
−dx
+
∫ =
(a) tanx – x + c (b) x + tanx + c
(c) x – tanx + c (d) –x – cotx + c
- ()
()
x
xx
+ dx
∫ +
1
1
2
2 is equal to
(a) logex + c (b) logex + 2tan–1x + c
(c) loge
x
(^1) c
(^2) + 1
⎛
⎝⎜
⎞
⎠⎟
- (d) loge{x(x^2 + 1)} + c
- xe
xe
dx
ex
ex
−−+
+
∫ =
11
(a) log(xe + ex) + c (b) elog(xe + ex) + c
(c)^1
e
log(xe cex++) (d) None of these
- sin
sin cos
2
44
x
xx
dx
+
∫ =
(a) cot–1(tan^2 x) + c (b) tan–1(tan^2 x) + c
(c) cot–1(cot^2 x) + c (d) tan–1(cot^2 x) + c
- sin
sin
2
222
x
ab x
dx
+
∫ =
(a)^12222
b
log(ab++sin xc)
(b)^1222
b
log(ab++sin xc)
(c) log(a^2 + b^2 sin^2 x) + c
(d) b^2 log(a^2 + b^2 sin^2 x) + c
- cos
(cos sin )
2
2
x
xx
dx
+
∫ =
(a) log cosxxc++sin (b) log(cosx – sinx) + c
(c) log(cosx + sinx) + c (d) −
+
(^1) +
cosxxsin
c
8.
1
1 −^2
∫ =
e
dx
x
(a) xec−log[ 11 + −^2 x]+
(b) xec++log[^11 −^2 x]+
(c) log[ 11 + −−exc^2 x] + (d) None of these
- sin
sin sin
2
53
x
xx
∫ dx=