Mathematics_Today_-_October_2016

(backadmin) #1

LEIBNITZ’S RULE
z If f(x) is continuous and u(x), v(x) are differentiable
functions in the interval [a, b], then,
d
dx ftdt fvx


d
dxvx f ux

d
ux dxux

vx
()( ) { ( )} { ( )} { ( )} { ( )}

()
∫ = −

z If the function φ(x) and Ψ(x) are defined on [a,b]
and differentiable at a point x ∈(a, b) and f(x, t) is
continuous, then,
d
dx


fxtdt d
dx

fxtdt dx
x dx

x
x

x
() (,) (,) ()

()
()

()
φφ

ΨΨ Ψ
∫∫


⎣⎢


⎦⎥=+




⎫⎫


×

fx x dx
dx

(, ())Ψ−φ()fx x(, ())φ

APPLICATION OF INTEGRALS
(i) The area bounded
by the curve y = f(x),
the x-axis and the lines
x = a and x = b is

  







Afxdx
a

b
=∫|()|

(ii) The area bounded
by the curves y = f(x),
y = g(x) and the lines
x = a and x = b is
Afxgxdx
a

b
=∫|() ()|−

(iii) The area bounded
by the curve x = f(y),
the y-axis and the lines
y = c and y = d is
Afydy
c

d
=∫|()|

(iv) The area bounded
by the curves x = f(y)
and x = g(y) and the
lines y = c and y = d is
Afygydy
c

d
=∫|() ()|−

PROBLEMS
Single Correct Answer Type


  1. sin
    sin( )


x
x

dx

∫ =
α
(a) xcosα – sinα logsin(x – α) + c
(b) xcosα + sinα logsin(x – α) + c


(c) xsinα – sinα logsin(x – α) + c
(d) None of these


  1. cos
    cos


21
21

x
x

−dx
+
∫ =
(a) tanx – x + c (b) x + tanx + c
(c) x – tanx + c (d) –x – cotx + c


  1. ()
    ()


x
xx

+ dx
∫ +

1
1

2
2 is equal to
(a) logex + c (b) logex + 2tan–1x + c
(c) loge
x

(^1) c
(^2) + 1

⎝⎜

⎠⎟



  • (d) loge{x(x^2 + 1)} + c



  1. xe
    xe


dx

ex
ex

−−+
+
∫ =

11

(a) log(xe + ex) + c (b) elog(xe + ex) + c
(c)^1
e

log(xe cex++) (d) None of these


  1. sin
    sin cos


2
44

x
xx

dx
+
∫ =
(a) cot–1(tan^2 x) + c (b) tan–1(tan^2 x) + c
(c) cot–1(cot^2 x) + c (d) tan–1(cot^2 x) + c


  1. sin
    sin


2
222

x
ab x

dx
+
∫ =

(a)^12222
b

log(ab++sin xc)

(b)^1222
b

log(ab++sin xc)
(c) log(a^2 + b^2 sin^2 x) + c
(d) b^2 log(a^2 + b^2 sin^2 x) + c


  1. cos
    (cos sin )


2
2

x
xx

dx
+
∫ =

(a) log cosxxc++sin (b) log(cosx – sinx) + c
(c) log(cosx + sinx) + c (d) −
+

(^1) +
cosxxsin
c
8.
1
1 −^2
∫ =
e
dx
x
(a) xec−log[ 11 + −^2 x]+
(b) xec++log[^11 −^2 x]+
(c) log[ 11 + −−exc^2 x] + (d) None of these



  1. sin
    sin sin


2
53

x
xx
∫ dx=
Free download pdf