(a) logsin3x – logsin5x + c
(b)^1
3
3 1
5log sin xxc++log sin 5(c)^1
3
3 1
5log sin xxc− log sin 5 +(d) 3logsin3x – 5logsin5x + c
- dx
xxlog .log(log )x
∫ =
(a) 2log(logx) + c (b) log[log(logx)] + c
(c) log(xlogx) + c (d) None of these
11.^1
1
2
2+
−∫ x =
xdx(a)^3
2
1
2sin−^12 xx xc−− 1 +(b)^3
2
1
2sin−^12 xx xc+ 1 − +(c)^3
2
1
2cos−^12 xx xc−− 1 +(d)^3
2
1
2cos−^12 xx xc+ 1 − +x
ax
33 dx
−
∫ =(a) sin
/
− ⎛
⎝⎜⎞
⎠⎟ +1
x^32
ac (b)^2
3132
sin/
−⎛
⎝⎜⎞
⎠⎟ +x
ac(c)^3
2
132
sin/
− ⎛
⎝⎜⎞
⎠⎟ +x
ac (d)^3
2123
sin/
−⎛
⎝⎜⎞
⎠⎟x +
ac- xdx
x
5() 1 +^3∫ =
(a)^2
3
()( ) 12 +++xx^33 c(b)^2
9
()( ) 14 +xx^33 − +c(c)^2
9
()( ) 14 +++xx^33 c(d)^2
9
()( ) 12 +xx^33 − +c14.^1
[(xx 12 )(^3514 )]/
dx
∫ − +
is equal to(a)^4
31
2x^14
x− c
+⎛
⎝⎜⎞
⎠⎟ +/
(b)^4
31
2x^14
x+ c
−⎛
⎝⎜⎞
⎠⎟ +/(c)^1
31
2x^14
x− c
+⎛
⎝⎜⎞
⎠⎟ +/
(d)^1
31
1x^14
x+ c
−⎛
⎝⎜⎞
⎠⎟+/15.^1
1 +^2
∫ =
sin x
dx(a)^1
2tan (−^12 tan )xk+(b) 22 tan (−^1 tan )xk+(c) −^1 − +
2tan (^12 tan )xk(d) − 22 tan (−^1 tan )xk+- xx
x
dx213
1 6tan (− )
∫ +
is equal to(a) tan–1(x^3 ) + c (b)^1
6(tan (−^132 xc)) +(c) −^1 − +
2(tan (^132 xc)) (d)^1
2(tan (−^123 xc)) +- sin
cos
3
52
2x
x
∫ dx=
(a) tan^4 x + c (b) tan 4x + c
(c) tan^42 x + x + c (d)^1
8tan^42 xc+- The value of^2 is
142
dx
− x∫
(a) tan–1(2x) + c (b) cot–1(2x) + c
(c) cos–1(2x) + c (d) sin–1(2x) + c- If∫f x dx() =g x(),then∫f−^1 ()x dxis equal to
(a) g–1(x) (b) xf–1(x) – g(f–1(x))
(c) xf–1(x) – g–1(x) (d) f–1(x) - sin
sin cos
x
xxdx
−
∫ =(a)^1
2log(sinxxxc−cos )++(b)^1
2[log(sinxxxc−cos )++](c)^1
2log(cosxxxc−sin )++(d)^1
2[log(cosxxxc−sin )++]