Mathematics_Today_-_October_2016

(backadmin) #1

  1. (log )
    (log )


x
x

− dx
+




⎩⎪




⎭⎪


1
1 2

2
is equal to

(a) xe
x


c

x
1 +^2

+ (b)

x
x

c
(log )^2 + 1

+

(c)


log
(log )

x
x
2 c
+ 1

+ (d) x
x
2 c
+ 1

+


  1. Let fx xdx
    xx


()
()( )

=
+++


2

11122

and f(0) = 0, then

the value of f(1) be


(a) log( 12 + ) (b) log( 12 )
4


+ −π

(c) log( 12 )
4


++π^ (d) none of these

23.∫cos−−^37 //xxdx⋅sin^117 =


(a) log | sin^47 / xc|+ (b)^4
7


tan^47 / xc+

(c) −^7 − +
4


tan^47 / xc (d) log|cos3/7x| + c


  1. cos sin


/
θθθ

π
3
0

2
∫ d =

(a)^20
21


(b)^8
21

(c) −^20
21

(d) −^8
21


  1. logx
    x


dx
a

b
∫ =

(a) log log
log


b
a


⎝⎜


⎠⎟

(b) log(ab) log b
a


⎝⎜


⎠⎟

(c)^1
2


log(ab) log b
a


⎝⎜


⎠⎟

(d)^1
2

log(ab) log a
b


⎝⎜


⎠⎟


  1. ∫tan−^1 =
    0


1
xdx

(a) π
4


1
2

− log 2 (b) π−

1
2

log 2

(c) π
4


−log 2 (d) π−log 2


  1. dx
    0 2 x


2
+
∫ =
cos

π/

(a)^1
3


1
3

tan−^1 ⎛
⎝⎜


⎠⎟

(b) 33 tan (−^1 )

(c)^2 ⎛
⎝⎜


⎠⎟


3

1
3

tan^1 (d) 23 tan (−^13 )


  1. xdx
    ax


a 4
224
0 ()+

∫ =


(a)^1
16 4

1
a^33

⎛π−
⎝⎜


⎠⎟

(b)^1
16 4

1
a^33

⎛π+
⎝⎜


⎠⎟

(c)^1
16 4

1
3

a^3 ⎛π−
⎝⎜


⎠⎟ (d)

1
16 4

1
3

a^3 ⎛π+
⎝⎜


⎠⎟


  1. sin cos
    sin


/ xx
x

+ dx
+
∫ =
0 916 2

π 4

(a)^1
20

log 3 (b) log3

(c)^1
20

log 5 (d) none of these


  1. sin cos
    cos cos


/ xxdx

0 2 xx

2

++ 32
∫ =

π

(a) log^8
9


⎝⎜


⎠⎟ (b) log

9
8


⎝⎜


⎠⎟
(c) log(8 × 9) (d) none of these


  1. The value of the integral


sinmxsinnxdxfor m n m n≠∈( , I),is


π

π

(a) 0 (b) π (c) π
2

(d) 2π


  1. dx
    012 − axa+^2


∫ =
cos

π

(a) π
21 ()−a^2

(b) π(1 – a^2 )

(c) π
1 −a^2

(d) none of these


  1. The value of dx
    ∫ 1 +excos
    must be same as


(a)^1
1

1
2 12

1


+


⎝⎜


⎠⎟

− +
e

e
e

tan tanx c

(e lies between 0 and 1)

(b)^2
1

1
2 12

1


+


⎝⎜


⎠⎟

− +
e

e
e

tan tanx c,

(e lies between 0 and 1)
Free download pdf