- (log )
(log )
x
x
− dx
+
⎧
⎨
⎪
⎩⎪
⎫
⎬
⎪
⎭⎪
∫
1
1 2
2
is equal to
(a) xe
x
c
x
1 +^2
+ (b)
x
x
c
(log )^2 + 1
+
(c)
log
(log )
x
x
2 c
+ 1
+ (d) x
x
2 c
+ 1
+
- Let fx xdx
xx
()
()( )
=
+++
∫
2
11122
and f(0) = 0, then
the value of f(1) be
(a) log( 12 + ) (b) log( 12 )
4
+ −π
(c) log( 12 )
4
++π^ (d) none of these
23.∫cos−−^37 //xxdx⋅sin^117 =
(a) log | sin^47 / xc|+ (b)^4
7
tan^47 / xc+
(c) −^7 − +
4
tan^47 / xc (d) log|cos3/7x| + c
- cos sin
/
θθθ
π
3
0
2
∫ d =
(a)^20
21
(b)^8
21
(c) −^20
21
(d) −^8
21
- logx
x
dx
a
b
∫ =
(a) log log
log
b
a
⎛
⎝⎜
⎞
⎠⎟
(b) log(ab) log b
a
⎛
⎝⎜
⎞
⎠⎟
(c)^1
2
log(ab) log b
a
⎛
⎝⎜
⎞
⎠⎟
(d)^1
2
log(ab) log a
b
⎛
⎝⎜
⎞
⎠⎟
- ∫tan−^1 =
0
1
xdx
(a) π
4
1
2
− log 2 (b) π−
1
2
log 2
(c) π
4
−log 2 (d) π−log 2
- dx
0 2 x
2
+
∫ =
cos
π/
(a)^1
3
1
3
tan−^1 ⎛
⎝⎜
⎞
⎠⎟
(b) 33 tan (−^1 )
(c)^2 ⎛
⎝⎜
⎞
⎠⎟
−
3
1
3
tan^1 (d) 23 tan (−^13 )
- xdx
ax
a 4
224
0 ()+
∫ =
(a)^1
16 4
1
a^33
⎛π−
⎝⎜
⎞
⎠⎟
(b)^1
16 4
1
a^33
⎛π+
⎝⎜
⎞
⎠⎟
(c)^1
16 4
1
3
a^3 ⎛π−
⎝⎜
⎞
⎠⎟ (d)
1
16 4
1
3
a^3 ⎛π+
⎝⎜
⎞
⎠⎟
- sin cos
sin
/ xx
x
+ dx
+
∫ =
0 916 2
π 4
(a)^1
20
log 3 (b) log3
(c)^1
20
log 5 (d) none of these
- sin cos
cos cos
/ xxdx
0 2 xx
2
++ 32
∫ =
π
(a) log^8
9
⎛
⎝⎜
⎞
⎠⎟ (b) log
9
8
⎛
⎝⎜
⎞
⎠⎟
(c) log(8 × 9) (d) none of these
- The value of the integral
sinmxsinnxdxfor m n m n≠∈( , I),is
−
∫
π
π
(a) 0 (b) π (c) π
2
(d) 2π
- dx
012 − axa+^2
∫ =
cos
π
(a) π
21 ()−a^2
(b) π(1 – a^2 )
(c) π
1 −a^2
(d) none of these
- The value of dx
∫ 1 +excos
must be same as
(a)^1
1
1
2 12
1
−
−
+
⎛
⎝⎜
⎞
⎠⎟
− +
e
e
e
tan tanx c
(e lies between 0 and 1)
(b)^2
1
1
2 12
1
−
−
+
⎛
⎝⎜
⎞
⎠⎟
− +
e
e
e
tan tanx c,
(e lies between 0 and 1)