Mathematics_Today_-_October_2016

(backadmin) #1

  1. [sin ]
    /


/
∫ xdx=
π

π

2

32
(where[.] is greatest integer

function)
(a) –π (b) π/2 (c) –π/2 (d) π


Matrix-Match Type


  1. Match the following :


Column I Column II
A. The value of
dx
1 nx

2

+


∫ cot

/

α

πα

where, 0
2

<<α π,n> 0 is

P. π
2

B. The value of
sin^2 ,
1

xxdx 0
+

>

∫ α α
π

π
is

Q. π
α
4


C. The value of

sin
sin cos

2
22

3
2 n
nn

x
xx

dx
+



α

πα

is

R. 3
4

π− 2 α

D. The value of
tan
tan cot
tan

cot x
xx

dx
− +



1

1

α

α
is

S. π
α
4

−tan−^1


  1. Match the following :


Column I Column II
A. sec
(sec tan )

x
xx

dx
+
∫ 2 =

P.
logsin
sin

x
x

− C

(^2) +
1
B. cos
(sin )(sin )
x
xx
dx
−−
∫ =
12
Q.



  • cos +
    (sin)
    2
    21 2
    x
    x
    C
    C.
    sin ,
    ||



  • ⎝⎜

    ⎠⎟
    <=

    1
    2
    2
    1
    1
    x
    x
    dx
    x
    R. 2xtan–1 x – log (1 + x^2 )



  • C
    D. (tanxxdx+=cot )

    S.
    2 1
    2
    tan^1 tan
    tan
    −⎛ −
    ⎝⎜

    ⎠⎟+
    x
    x
    C
    Integer Answer Type



  1. If the value of definite integral xa axdx


a
∫ ⋅ −[log ]
1
where a > 1, and [.]denotes the greatest integer, ise−^1
2
then the value of 5[a] is ___


  1. IfIx=+∫ (sin (sin ) cos (cos ))^22 x xdx,
    0


π
then
[I] = ____, where [.] denotes the greatest integer
function


  1. Area bounded by 2 ≥ max. {|x – y|, |x + y|} is
    k sq. units then k =

  2. The area bounded by the curves y = ln x, y = ln|x|,
    y = |lnx|, y = |ln|x||(in sq. units) is

  3. Let f(x) = x^3 + 3x + 2 and g(x) is the inverse of it.
    The area bounded by g(x), the x-axis and the ordinates
    at x = –2 and x = 6 is m
    n


where m, n ∈ N and G.C.D of
(m, n) = 1 then m – 2 =


  1. The integral (| cos | sin | sin | cos )
    /


/
∫ tt t tdt+
π

π

4

54
has
the value equal to


  1. If the area bounded by the curves y = –x^2 + 6x – 5,
    y = –x^2 + 4x – 3 and the line y = 3x – 15 is^73
    λ


sq. units,
then the value of λ is


  1. The minimum area bounded by the function
    y = f(x) and y = αx + 9, (α ∈ R) where f satisfies the
    relation f(x + y) = f(x) + f(y) +yfx xyR() ,∀∈and
    f′(0) = 0 is 9A, then value of A is

  2. Let R = {x, y : x^2 + y^2 ≤ 144 and sin(x + y) ≥ 0} and
    S be the area of region given by R, then find S/9π.

  3. If the area bounded by [x] + [y] = n and y = k;
    n, k ∈ N and k ≤ (n + 1) and [.] greatest integer function,
    in the first quadrant, is n + r, then find r.
    SOLUTIONS

  4. (b) : sin
    sin( )


sin( )
sin( )

x
x

dx x
x

dx

= − +
∫∫α −

αα
α

= − + −
∫ −

(sin( ) cos cos( )sin
sin( )

xx
x

αα ααdx
α
=+∫cosαααdx ∫sin ⋅−cot(x )dx
= xcosα + sinα · logsin(x – α) + c
Free download pdf