- (c) : Let I = cos
cos
21
21
x
x
− dx
∫ +
⇒ =− −
I ∫∫x =−
x
dx x
x
(cos) dx
(cos)
sin
cos
12
12
2
2
2
2
⇒ Ixdx xdx=−∫tan^22 =−−∫(sec 1 )
⇒ I = x – tanx + c
- (b) : ()
() ()
x
xx
dx xx
xx
+ dx
+
= ++
∫∫+
1
1
12
1
2
2
2
2
= +
+
+
∫∫+
x
xx
dx x
xx
dx
2
22
1
1
2
() () 1
=+
+
∫dx ∫ =+− +
x
dx
x
(^2) exxc
1
2 log^2 tan^1
- (c) : Put xe + ex = t ⇒ e(xe – 1 + ex – 1)dx = dt
Now, xe
xe
dx
e
dt
te
t
e
xe c
ex
ex
−−+ ex
+
∫∫== = ++
(^11) 11 1
log log( )
- (b) : LetI x
xx
= dx
∫ +
sin
sin cos
2
44
=
+
=
∫ ∫ +
22
(^441)
2
4
sin cos
sin cos
tan sec
tan
xx
xx
dx xx
x
dx
Put tan^2 x = t ⇒ 2tanx sec^2 xdx = dt
∴ I = dt
t
tc x c
1 2
112
- ∫ =+=tan−−tan (tan )+
- (a) : Put a^2 + b^2 sin^2 x = t ⇒ b^2 sin2xdx = dt, then
sin
sin
222211 x 2 2 log
ab x
dx
b
dt
t b
tc
+
∫∫==+
=++^12222
b
log(absin xc)
- (c) :
cos
(cos sin )
2
2
x
xx
dx
∫ +
= − +
∫ +
(cos sin )(cos sin )
(cos sin )
xxxx
xx
2 dx= −
∫ +
cos sin
cos sin
xx
xx
dx
Put t = sinx + cosx ⇒dt =(cosx – sinx)dx, then it
reduces to
1
t
∫ dt=+=logt c log(sinx+ +cos )x c
- (a) :^1
11 −^22
=
−
∫∫
−
e dx −
e
e
x dx
x
x
Put e–x = t ⇒ –e–x dx = dt, then it reduces to
−
−
∫^1 =− + − +
1
2 2 1
t
dt log[t t ] c
=− + − =− + −
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
log[ee−−] log
e
e
e
xx
x
x
x
2 1 112
=−log[ 11 + −eec^2 xx] log++ =xec−log[ 11 + −^2 x]+
- (c) : sin
sin sin
sin( )
sin sin
2
53
53
53
x
xx
dx xx
xx
∫∫= − dx
=∫sin cos −cos sin
sin sin
53 53
53
xx xx
xx
dx
=^1 − +
3
3 1
5
log sin xxclog sin 5
- (b) : dx
∫xxlog ⋅log(log )x
Put log (logx) = z
⇒ 11
logxx
⋅ dx=dz, then it reduces to
dz
z
∫ ==logzxclog[log(log )]+
- (a) : Put x = sinθ ⇒ dx = cosθdθ, then
1
1
1 1
2
12
2
2
+ 2
−
∫∫x =+∫ =+ −
x
dx ( sin θθθ)d ( cos θθ)d
=^3 −−+
2
1
2
θ sinθθ 1 sin (^2) c= (^3) − −−+
2
1
2
sin^12 xx xc 1
- (b) : Put x = a(sinθ)2/3
⇒ dx=^2 a − d
3
(sin )θθθ^13 / cos
∴
−
=
−
∫∫
−
x
ax
dx
aa
aa
33 d
12 13 13
332
2
3
//(sin ) (sin ) /cos
sin
θθθ
θ
θ
=
−
(^2) ∫ = − ⎜⎛⎝ ⎞⎟⎠ +
(^31)
2
3
32
32 2
1
32
a d
a
x
a
/ c
/
cos /
sin
θθ sin
θ
- (d) : Put 1 + x^3 = t^2 ⇒ 3 x^2 dx = 2tdt
∴ Itdt=^2 ∫ −
3
()^21
= −
⎛
⎝
⎜
⎞
⎠
⎟+= − += − ++
2
33
2
9
3 2
9
21
t^3233
tc tt() ( )c x xc
- (a) : LetI
xx
= dx
∫ − +
1
[( 12 )(^3514 )]/
=
−
+
⎛
⎝⎜
⎞
⎠⎟ +
−
+ = ⇒ + =
∫
1
1
2
2
1
2
3
2
(^342)
2
x
x
x
dx
x
x t x dx dt
/
()
()
Put