∴ I= ∫
t(^1) dt
3
1
34 / =
⎛
⎝
⎜
⎞
⎠
⎟+=
−
- ⎛
⎝⎜
⎞
⎠⎟ +
1
314
4
3
1
2
t^1414
c x
x
c
/ /
/
- (a) : I
x
dx dx
xx=
+=
∫ ∫ +1
12 sin^222 sin cos=
+=
+∫∫
sec
tansec
tan2
22
2121
2 1
2xdx
xxdx
xPut tanx = t ⇒ sec^2 xdx = dt, then
I dt
t= t k
+= ⎛
⎝⎜⎞
⎠⎟⎛
⎝⎜⎞
⎠⎟(^1) ∫ − +
2 1
2
1
2
1
(^21212)
1
/
tan
/
=+^1 −
2
tan (^12 tan )xk
- (b) : Put tan–1(x^3 ) = z ⇒
(^1) ×=
1
6 3 2
x
xdx dz
Now, xx
x
dx zdz
213
1 6
1
3
tan (− )
- ∫∫=
=^1 ⋅ =+−
32
1
6
z^2132
(tan (xc))
- (d) : I x
x
==∫∫sin dx x⋅ xdx
costan sec3
5(^232)
2
22
Putting tan2x = t and 2sec^22 xdx = dt, we get
I==∫tdt ⋅t+=cxc+
(^344)
2
1
24
1
8
(tan 2 )
- (d) :Put 2xdxd=sinθθθ⇒ 2 =cos
⇒ =
−Iddc∫∫cos ==+
sinθ
θθθθ
1 2
⇒ I = sin–1(2x) + c
- (b) : ∫fxdx gx() = ()(Given)
Now,Ifxdxfxdxd
dx= ⋅ = − ⎧⎨ f x dx dx
⎩⎫
⎬
⎭−− −
∫ ∫ ∫ ∫(^11) () () (^1) ()
=xf−−−−x−∫∫{}xd = −
dx
(^1111) () fxdxxfx xdfx() () { ()}
Let f–1(x)= t ⇒ x = f(t) and d{f–1(x)} = dt
∴Ixfx ftdtxfxgtxfxgfx= −−−−^1111 ()−∫ ()= () ()− = () {− ()}
- (b) : sin
sin cos
sin
sin cosx
xxdx x
xxdx
−=
∫∫−1
22= − ++
∫ −1
2(sin cos sin cos )
sin cosxxxx
xxdx=++
−⎛
⎝⎜⎞
∫ ⎠⎟ =+ − +1
21 1
2sin cos
sin cosxx [ log(sin cos )]
xxdx x x x c- (b) : Put logxt dxedt= ⇒ = t
log
(log ) ( )
x
xdx e
tt
t− t dt
+⎧
⎨⎪
⎩⎪⎫
⎬⎪
⎭⎪=
+−
+⎡
⎣⎢⎤
⎦∫∫⎥
1
11
12(^21)
2
222
- +=
e +
t
c x
x
c
t
1122 (log )
- (b) : Let x = tanθ ⇒ dx = sec^2 θdθ
fx xdx
xx() d
()( )tan sec
sec ( sec )=
+++=
∫ ∫ +2
2222111 2 1θθθ
θθ=
+=
+=−
∫∫ +tan
secsin
cos ( cos )(cos)
cos ( cos22 2
111
1θθ
θθθ
θθθθ
θdd d
∫ θθ)=∫∫(cos)− =∫ −
cos1 θθ sec
θd θθ θdd=++log(xx 1 21 ) tan− − xc+
Now,fc( )=++log( ) tan ( )0010− −^1 + ⇒^ c = 0 0∴ (^) f( ) log( ) tan ( ) log( )1111 112
4
=++^21 − − =+−π
- (c) : Ix xdx=∫cos−−^37 /(/)⋅(sin 2 37+ )
=∫cos−−^37 //xx xdxsin^2 sin^37
=
⎛
⎝⎜⎞
⎠⎟∫∫cos =
cos
sincos
/ cot
//ec^2 ec
37
372
37x
x
xdx xdx
xPut cotx = t ⇒ –cosec^2 xdx = dt
I dt
t=−∫ 37 =−^7 tc^47 +
/ 4/ =−^7 − +
4tan^47 / xc- (b) : LetId= ∫ cos sin
/
θθθπ
3
02Put t = cosθ ⇒ dt = –sinθdθIt tdtttdt=−−∫^122 =∫^12 −^52
0110
///() ( 1 )⇒ (^) It t=⎡ −
⎣⎢
⎤
⎦⎥
(^2) =
3
2
7
8
21
32 72
0
1
//
- (c) : LetI
x
xdx
ab
=∫^1 log⇒ I xx
x
ab xdx
ab
=[log .log ] −∫^1 log⇒ 2 = ⇒ =^1 −
2Ix I b a^222
a
[(log ) ]b [(log ) (log ) ]
⇒ =+ − = ⎛
⎝⎜⎞
⎠⎟Ibaba abb
a1
21
2[(log log )(log log )] log( ) log