Adding (i) and (ii), we get
21
2
2
2
Idx= ⋅ = −
−
∫
α
πα π
α
/
⇒ I=π−α
4
(B) Let I= xxdx
− +
∫
sin^2
π^1 α
π
... (i)
⇒ I= −xx dx
−∫ + −
sin (^2 )
0
0
π^1 α
π
⇒ I xdx
x
=−∫ + x
α
π α
π sin 2
1
... (ii)
Adding (i) and (ii), we get
2222
0
Ixdx xdx==∫ ∫
−
sin sin
π
π
π
⇒ Ixdx==∫∫sin sin xdx=
2 /
0
2
0
2
2
2
πππ
(C) LetI x
xx
dx
n
= nn+
−
∫
sin
sin cos
2
22
3
2
α
π α
... (i)
=
⎛⎝⎜ − ⎞⎠⎟
⎝⎛⎜ − ⎞⎠⎟+ ⎛⎝⎜ − ⎞⎠⎟
− sin
sin cos
2
22
3
2
3
2
3
2
3
2
n
nn
x
xx
dx
π
α ππ
πα
∫∫
⇒ I x
xx
dx
n
= nn+
−
∫
cos
sin cos
2
22
3
2
α
π α
... (ii)
Adding (i) and (ii), we get
213
2
3
2
Idx= ⋅ =⎜⎛⎝ −−⎞⎠⎟
−
∫
π αα
α
π α
⇒ (^) I=^3 −
4
π α
(D) Let I x
xx
= dx
− +
−
∫
tan
tan tan cot
cot
1
1
α
α
... (i)
− +
−
∫
cot
tan cot tan
cot x
xx
dx
1
1
α
α
... (ii)
Adding (i) and (ii), we get
21
1
1
Idx==^11 −
−
−
∫ −−
tan
cot
cot tan
α
α
αα
=⎝⎜⎛π− −α⎞⎠⎟− −α
2
tan^1 tan^1
or I=⎜⎛⎝π− −α⎞⎠⎟
4
tan^1
- A (Q), B (P), C (R), D (S)
(A) We h a v e sec
(sec tan )
x
xx
dx
∫ + 2
= +
+
∫∫sec (sec tan ) =
(sec tan )
xx x
xx
dx dt
(^33) t
(Putting t = secx + tanx)
=−^1 ++−
2
(secxxCtan )^2
(B)
cos
(sin )(sin ) ( )( )
x
xx
dx dt
−− tt
∫ 12 ∫ −− 12
(Putting t = sinx)
−
−
−
⎛
⎝⎜
⎞
⎠⎟ =
−
−
∫^1 +
2
1
1
2
tt^1
dt x
x
log|sin | C
|sin |
(C) sin− sec ( tan )
⎛
⎝⎜
⎞
⎠⎟
∫^122 ==∫^2
1
x 2
x
dx t tdt Puttingx t
= 2[t tant – log|sect| + C 1 ] = 2x tan–1x – log(1 + x^2 ) + C
(D) Putting tanx = y^2 , so that dx ydy
y
2
() 1 4
, we have
(tanxxdxcot ) y y y
y
+=⎛⎝⎜ + ⎞⎠⎟ dy
∫ ∫
(^12)
1 4
= +
= +
∫∫+
2 1
1
2 11
1
2
4
2
22
y
y
dy y
yy
/ dy
/
= +
− +
(^2) ∫^11 ∫ = −
12
2
2
(^21)
22
/
(/)
y
yy
dy du
u
uy
y
where
=+= 21 −−⎝⎜⎛ − ⎞⎟⎠+
22
2 1
2
tan^11 tan tan
tan
u C x
x
C
- (5) : Let logax=t ⇒ att=x ⇒dx=alogea dt
∴⋅∫xa− axdx
a [log ]
1
=lnaa a∫∫ttt⋅⋅−[]adt=lnaa dtt
0
(^12)
0
1
=ae− = − ⇒ ae=
(^21)
2
1
2
- (4) : Ix x=∫(π− )((sin (sin )) cos (cos ))+ xdx
π
0
22
⇒ 22 =+∫^22
0
2
Ixxdxπ
π
(sin (sin ) cos (cos ))
/
⇒ Ixxdx=+π ∫
π
(sin (sin ) cos (cos ))
/ 22
0
2
=+π ∫
π
(sin (cos ) cos (sin ))
/ 22
0
2
xxdx
⇒ 22 = ∫ ⇒ =
0 2
2 2
IdxIπ π
π/