Mathematics_Today_-_October_2016

(backadmin) #1

Adding (i) and (ii), we get


21
2

2

2
Idx= ⋅ = −



α

πα π
α

/
⇒ I=π−α
4

(B) Let I= xxdx
− +



sin^2
π^1 α

π
... (i)

⇒ I= −xx dx
−∫ + −


sin (^2 )
0

0
π^1 α

π
⇒ I xdx

x
=−∫ + x
α
π α

π sin 2
1

... (ii)

Adding (i) and (ii), we get


2222
0

Ixdx xdx==∫ ∫

sin sin

π

π

π

⇒ Ixdx==∫∫sin sin xdx=
2 /
0

2
0

2
2
2

πππ

(C) LetI x
xx


dx

n
= nn+



sin
sin cos

2
22

3
2
α

π α
... (i)

=

⎛⎝⎜ − ⎞⎠⎟

⎝⎛⎜ − ⎞⎠⎟+ ⎛⎝⎜ − ⎞⎠⎟

− sin

sin cos

2

22

3
2

3
2
3
2

3
2

n

nn

x

xx

dx

π

α ππ

πα

∫∫


⇒ I x
xx


dx

n
= nn+



cos
sin cos

2
22

3
2
α

π α
... (ii)

Adding (i) and (ii), we get


213
2


3
2
Idx= ⋅ =⎜⎛⎝ −−⎞⎠⎟



π αα
α

π α

⇒ (^) I=^3 −
4
π α
(D) Let I x
xx
= dx
− +


tan
tan tan cot
cot
1
1
α
α
... (i)


− +


cot
tan cot tan
cot x
xx
dx
1
1
α
α
... (ii)
Adding (i) and (ii), we get
21
1
1
Idx==^11 −


∫ −−
tan
cot
cot tan
α
α
αα
=⎝⎜⎛π− −α⎞⎠⎟− −α
2
tan^1 tan^1
or I=⎜⎛⎝π− −α⎞⎠⎟
4
tan^1



  1. A  (Q), B  (P), C  (R), D  (S)


(A) We h a v e sec
(sec tan )


x
xx

dx
∫ + 2

= +
+
∫∫sec (sec tan ) =
(sec tan )

xx x
xx

dx dt

(^33) t
(Putting t = secx + tanx)
=−^1 ++−
2
(secxxCtan )^2
(B)
cos
(sin )(sin ) ( )( )
x
xx
dx dt
−− tt


∫ 12 ∫ −− 12
(Putting t = sinx)






⎝⎜

⎠⎟ =


∫^1 +
2
1
1
2
tt^1
dt x
x
log|sin | C
|sin |
(C) sin− sec ( tan )





  • ⎝⎜

    ⎠⎟
    ∫^122 ==∫^2
    1
    x 2
    x
    dx t tdt Puttingx t
    = 2[t tant – log|sect| + C 1 ] = 2x tan–1x – log(1 + x^2 ) + C
    (D) Putting tanx = y^2 , so that dx ydy
    y




  • 2
    () 1 4
    , we have
    (tanxxdxcot ) y y y
    y
    +=⎛⎝⎜ + ⎞⎠⎟ dy




  • ∫ ∫
    (^12)
    1 4
    = +




  • = +
    ∫∫+
    2 1
    1
    2 11
    1
    2
    4
    2
    22
    y
    y
    dy y
    yy
    / dy
    /
    = +
    − +




  • (^2) ∫^11 ∫ = −
    12
    2
    2
    (^21)
    22
    /
    (/)
    y
    yy
    dy du
    u
    uy
    y
    where
    =+= 21 −−⎝⎜⎛ − ⎞⎟⎠+
    22
    2 1
    2
    tan^11 tan tan
    tan
    u C x
    x
    C





  1. (5) : Let logax=t ⇒ att=x ⇒dx=alogea dt


∴⋅∫xa− axdx


a [log ]

1

=lnaa a∫∫ttt⋅⋅−[]adt=lnaa dtt
0

(^12)
0
1
=ae− = − ⇒ ae=
(^21)
2
1
2



  1. (4) : Ix x=∫(π− )((sin (sin )) cos (cos ))+ xdx


π

0

22

⇒ 22 =+∫^22
0

2
Ixxdxπ

π
(sin (sin ) cos (cos ))

/

⇒ Ixxdx=+π ∫


π
(sin (sin ) cos (cos ))

/ 22

0

2

=+π ∫


π
(sin (cos ) cos (sin ))

/ 22

0

2
xxdx

⇒ 22 = ∫ ⇒ =
0 2

2 2
IdxIπ π

π/
Free download pdf