SECTION-I
Single Correct Answer Type
- A continuous function f : [0, 1] → R satisfies the
equation ∫f x dx() =+^1 ∫f ( ) ,x dx
3
22
0
1
0
1
then f^1
4
⎛
⎝⎜
⎞
⎠⎟=
(a) 1 (b) 1/2 (c) 1/4 (d) –1/4
- A continuous function f : [0, 1] → R satisfies the
condition ∫fx x fx dx()(− ()) =^1 ,
0 12
1
then f^1
4
⎛
⎝⎜
⎞
⎠⎟=
(a) 1/2 (b) 1/4 (c) 1/6 (d) 1/8
- Compute () 2332113 /
0
1
∫ xxx dx−−+
(a) 0 (b) –1 (c) 1/8 (d) –1/8
- Consider a one-to-one differentiable solution y to
the equation dy
dx
dx
dy
2
2
2
+= 2 0 such that y(0) = 2 and
y(–1) = –1 then y(1) =
(a) –20 (b) 20 (c) –5 (d) 5
- Let f : [0, 1] → R be a continuous function with the
property that x f(y) + y f(x) ≤ 1 for all x, y ∈ [0, 1]
then
(a) ∫fxdx() =π
0 4
1
(b) ∫fxdx() ≤π
0 4
1
(c) ∫fxdx() ≥π 4
0
1
(d) ∫fxdx() ≥π 2
0
1
- For every θ ∈ (0, π], we have
(a)^1222
0
∫ +>+cos tdt θθsin
θ
(b)^1222
0
∫ +=+cos tdt θθsin
θ
(c)^1222
0
∫ +<+cos tdt θθsin
θ
(d)^1
1
2
222
0
∫ +=+cos tdt θθsin
θ
- y(x) satisfies the differential equation
dy
dx
=+yyyelog x. If y(0) = 1, then y(1) =
(a) ee (b) e–e (c) e1/e (d) e
- The function f dx
x
()
cos
,(,)
/
λ
λ
λ
π
=
−
∫ ∈
1
01
0 2
2
is
(a) increasing (b) decreasing
(c) increasing on (0, 1/2) and decreasing on (1/2, 1)
(d) increasing on (1/2, 1) and decreasing on (0, 1/2)
- Let f satisfy the equation x = f(x)·ef(x) then
fxdx
e
∫ () =
0
(a) 1 (b) e – 1 (c) e + 1 (d) 0
- Let a, b ∈ R, a < b and let f be a differentiable function
on the interval [a, b] then lim ( ) sin
n a
b
f x nxdx
→∞∫
=
(a) 0 (b) 1 (c) b (d) b – a
- The shortest possible length of an interval [a, b] for
which^4
1 +^2
∫ =
x
dx
a
b
π is
(a) 2 (b) 22 (c) 22 2+ (d) 22 2−
SECTION-II
Comprehension Type
Paragraph for Question No. 12-14
Let θk(x) be 0 for x < k and 1 for x ≥ k. The dirac delta
function is defined to be δθkkx d
dx
()= ().x Suppose
By : Tapas Kr. Yogi, Mob : 9533632105.