SECTION-I
Single Correct Answer Type- A continuous function f : [0, 1] → R satisfies the
 
equation ∫f x dx() =+^1 ∫f ( ) ,x dx
322
0101
then f^1
4⎛
⎝⎜⎞
⎠⎟=
(a) 1 (b) 1/2 (c) 1/4 (d) –1/4- A continuous function f : [0, 1] → R satisfies the
 
condition ∫fx x fx dx()(− ()) =^1 ,
0 121
then f^1
4⎛
⎝⎜⎞
⎠⎟=
(a) 1/2 (b) 1/4 (c) 1/6 (d) 1/8- Compute () 2332113 /
0 
1
∫ xxx dx−−+(a) 0 (b) –1 (c) 1/8 (d) –1/8- Consider a one-to-one differentiable solution y to
 
the equation dy
dxdx
dy2
22
+= 2 0 such that y(0) = 2 and
y(–1) = –1 then y(1) =
(a) –20 (b) 20 (c) –5 (d) 5- Let f : [0, 1] → R be a continuous function with the
property that x f(y) + y f(x) ≤ 1 for all x, y ∈ [0, 1]
then 
(a) ∫fxdx() =π
0 41
(b) ∫fxdx() ≤π
0 41(c) ∫fxdx() ≥π 4
01
(d) ∫fxdx() ≥π 2
01- For every θ ∈ (0, π], we have
 
(a)^1222
0∫ +>+cos tdt θθsin
θ(b)^1222
0∫ +=+cos tdt θθsin
θ(c)^1222
0∫ +<+cos tdt θθsin
θ(d)^11
2222
0∫ +=+cos tdt θθsin
θ- y(x) satisfies the differential equation
dy
dx 
=+yyyelog x. If y(0) = 1, then y(1) =
(a) ee (b) e–e (c) e1/e (d) e- The function f dx
x 
()
cos,(,)/
λ
λλπ
=
−∫ ∈
101
0 22
is(a) increasing (b) decreasing
(c) increasing on (0, 1/2) and decreasing on (1/2, 1)
(d) increasing on (1/2, 1) and decreasing on (0, 1/2)- Let f satisfy the equation x = f(x)·ef(x) then
fxdx 
e
∫ () =
0
(a) 1 (b) e – 1 (c) e + 1 (d) 0- Let a, b ∈ R, a < b and let f be a differentiable function
 
on the interval [a, b] then lim ( ) sin
n ab
f x nxdx
→∞∫=(a) 0 (b) 1 (c) b (d) b – a- The shortest possible length of an interval [a, b] for
which^4
1 +^2
∫ =
x 
dx
ab
π is(a) 2 (b) 22 (c) 22 2+ (d) 22 2−
SECTION-II
Comprehension Type
Paragraph for Question No. 12-14
Let θk(x) be 0 for x < k and 1 for x ≥ k. The dirac delta
function is defined to be δθkkx d
dx()= ().x SupposeBy : Tapas Kr. Yogi, Mob : 9533632105.