Similarly, cosθ=.
GG
bc^ ...(ii)
∵ G
G GG
ab ab⊥∴. = 0
Also, GG
G G G
cpaqbrab=++×()
∴ GG GG G=++ ×
G GGG
ac paa qab ra a b.. ..()
= p + 0 + 0 = p ⇒ cos θ = p ∴ |p| = |cos θ| ≤ 1
Similarly, cosθ = q ⇒ |q| ≤ 1
Also, p = q.
- (a, c) : ... Roots are complex
∴ D < 0 ⇒ (a + b + c)^2 – 4 (ab + bc + ca) < 0
⇒ (a + c)^2 + b^2 + 2b(a + c) – 4b(a + c) < 4 ac
⇒ (a + c – b)^2 < 4 ac ⇒ − 22 ac<+a c b− < ac
⇒ ()ac b acb+>^2 ⇒ +>⇒()a is correct.
⇒ acb+ − > ⇒ + − >
bc ab ca
0 1110
Similarly,
(^11101110)
bc ca ab ca ab bc
- − >+and − >
∴ On multiplying,
111
111 111 0
ab bc ca
bc ca ab ca ab bc
⎛ + −
⎝
⎜
⎞
⎠
⎟
⎛ + −
⎝
⎜
⎞
⎠
⎟ + −
⎛
⎝
⎜
⎞
⎠
⎟>
⇒ (c) is correct.
- (a, c, d) : ... a sinθ + b cosθ = c ...(i)
& a cosec θ + b sec θ = c ...(ii)
∴ On multiplying, abab^22 ++⎛ + c^2
⎝⎜
⎞
⎠⎟
sin =
cos
cos
sin
θ
θ
θ
θ
⇒ ++⎛
⎝⎜
⎞
⎠⎟
ab ab^2221 =c^2
sin 2 θ
∴ =
−−
sin2θ 2222 ab
cab
From (i) & (ii), a sin θ + bcosθ = a cosec θ + b secθ
⇒−⎛
⎝⎜
⎞
⎠⎟
+ ⎛ −
⎝⎜
⎞
⎠⎟
ab^11 = 0
sin
sin
cos
cos
θ
θ
θ
θ
⇒abcos +=
sin
sin
cos
22
θ 0
θ
θ
θ
∴abcos^33 θθ+=sin 0
From (i), b cos θ = c – a sinθ ...(iii)
& from (ii), b sec θ = c – a cosec θ ...(iv)
From (iii) & (iv), b^2 = c^2 + a^2 – ac (sinθ + cosecθ)
∴ sinθθ+=cosec acb+ −
ac
222
- (b,c,d) :
... If x → 0 +, 2013x ∈ (1, 2) ⇒ {2013x} = 2013x – 1
And, x → 0 – , 2013x ∈ (0, 1) ⇒ {2013x} = 2013x
lim ( ) lim ( )
x
x
x
f x x
→→
{}
00 ++=
1
2013
2013 2013
=
→
−
xlim (+ )
x x
0
1
2013 2013 1
=
→
lim ( ) − (∞ )
h
h h
0
1
2013 2013 1 1 form
==→
()−
−
⎡
⎣
⎢⎢
⎤
⎦
⎥⎥
eeh
h
lim 0 2013 1 .()h
1
2013 1
And,
lim ( ) lim
x
x
x
f x
x
→→−−
{}
= ()
00
2013 2013
1
2013
= ()= ()
→ →
−
−
{}−
lim lim
x
x
h
h
x h
0 0
2013 20130
1
2013
1
20130
= ()==
→
−
−
lim
h
h
h
0
2013 11 1
1
2013
... R.H.L ≠ L.H.L
⇒ lim ( )
x
f x
→ 0
2013 does not exist
- (a, b) : Diagramatically
Clearly, required probability
= ×
⎛
⎝
⎜
⎜
⎞
⎠
⎟
⎟×
⎛ ××
⎝
⎜
⎜
⎞
⎠
⎟
⎟
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
2
3
1
3
2
6
3
1
1
2
1
3
1
6
3
CC
C
CCC
C
= ⋅⋅⋅⋅⋅
⋅
(^233123) ==
20 20
27
100
27%