⇒ (x – 2014) (x – 2015) + (x – 2015) (x – 2013)
+ (x – 2013)(x – 2014) = 0 ⇒ g(x) = 0 [say]
∴ g(2013) = (–1)(–2) = 2 > 0, g(2014) = (– 1)(1) = –1 < 0
and g(2015) = (2)(1) = 2 > 0
As g(x) changes sign between 2013 & 2014, 2014 &
2015, the equation g(x) = 0 has roots between them.
∴ Both roots are real and different.
- (d) : Let sin
cos
sin
cos
sin
cos
x
A
y
B
z
C
===k
∴ sin x = kcos A ...(i)
∴ −
−
⎛
⎝
⎜⎜
⎞
⎠
⎟⎟= −−+
−
⎛
⎝
∑ sin cos ⎜
sin cos
cos sin
sin cos
(^22) Ax 112 2
xA
Ax
⎜⎜ xA
⎞
⎠
⎟⎟
= −
−
⎛
⎝
⎜⎜
⎞
⎠
⎟⎟
∑
∑
sin cos
sin cos
(^22) xA
xA
= ∑(sinx + cos A) = ∑sinx + ∑cos A
()+ ()−
−
∑∑ ∑∑
∑∑
sin cos sin cos
sin cos
xAxA
xA
()−()
−
∑∑
∑
sin cos
(sin cos )
xA
xA
22
- (d) : xxxr px
r
r r
r
() 1 2
00
++ =
=
∞
=
∞
∑∑
⇒ (1 + x + x^2 )(1 + x + x^2 + x^3 +... to ∞)
= p 0 + p 1 x + p 2 x^2 + p 3 x^3 + ... to ∞
⇒ ++
−
⎛
⎝⎜
⎞
⎠⎟
( )^1 =+ + ++...1 ∞
1
2
01 2
xx^2
x
ppxpx to
⇒ ppxpx px01 2++ + +^233 ... to∞
= (1–x)–2 (1 – x^3 )
= (1 + 2x + 3x^2 + 4x^3 + ... to ∞) (1 – x^3 )
∴ On comparing, we get
p 0 = 1, p 1 = 2, p 2 = 3 = p 3 = p 4 = p 5 = ........
∴ =+++++
=
∑pppppr p
r
0123 671
0
671
...
= 1 + 2 + (3 + 3 + 3 + ... to 670 terms)
= 3 × 671 = 2013
- (b) : Let I dx
xx
=
∫(tan) 1 + 2
=
+
= −−
∫ ∫ +
cot
(cot )
()
(cot )
2
2
2
2
xdx 1
xx
xdx
xx
cosec
=− +
+
=
+
∫dx x x + ⇒ =
xxxx
(cot) cfx x
(cot) cot
2 1 () cot
- (d) : For non-trivial solution, we must have
sin
sin
sin
2
2
2
11
11
11
0
11
11
11
0
α
β
γ
= ⇒ =
p
q
r
(where = sinp^2 αβγ, qrsin , sin )
p
pq
pr
RR
==
⇒− −
−−
=
→−
22
22
11
110
101
0
RR
RRR
1
331
,
→−
⎡
⎣
⎢
⎤
⎦
⎥
⇒ p(q – 1)(r – 1) – (1 – p)(r – 1) + 1{0 – (1 – p)
(q – 1)} = 0
⇒ − +
−
+
−
+
−
()p =
pqr
11
1
1
1
1
1
0
⇒
−
+
−
+
−
(^1) =
1
1
1
1
1
2221
sin αβγsin sin
⇒ ++=⇒ +=
⇒ =− <
sec sec sec ∑( tan )
tan
222 2
2
11 1
20
αβγ α
∑ α , which is impoossible
- (c) : ... 256 a 1 a 2 a 3 a 4 ≥ ar
r=
∑
⎛
⎝
⎜⎜
⎞
⎠
⎟⎟
1
4 4
∵ 44 aa a a123 4≥a123 4+++a a a
⇒
+++
≤⇒≤
aa a a
123 4 (^4) aa a a123 4
4
A.M. G.M.
But, A.M ≥ G.M ⇒ A.M = G.M
⇒ a 1 = a 2 = a 3 = a 4 ...(i)
Also, 502a 1 + 503a 2 + 504a 3 + 505 a 4 = 2014
∴ 2014 a 1 = 2014 ⇒ a 1 = 1 = a 2 = a 3 = a 4
Now, aaaaarr
r
= + + + =+++=
∑ 122 33 44
1
4
1111 4^
- (d) : ∵ xyt
t
xyt
t
22 4 42
2
+=−^11 and +=+
⇒ xy xyt++ =+−
t
44 222 2 1 2
2
and xyt
t
442
2
+=+^1
⇒ x^2 y^2 = –1, which is not possible for x, y ∈ R.
∴ (a), (b) and (c) are not possible.
- (a,b,c): ∵ G
G G
abc=== 1
Let θ be the angle between GG
G G
ac& and & bc
∴ cos ==
.
||||
θ.
GG
GG
ac GG
ac
ac ...(i)