- (b) : We h a v e
22
2
21
2
−cosx= tanxx⇒−⎝⎜⎛ tan ⎟⎞⎠=cosx
⇒−⎛⎝⎜ ⎞⎠⎟=
−
+
21
2
1
2
1
2
2
2
tan
tan
tan
x
x
x
⇒−⎛⎝⎜ ⎞⎠⎟ −
+
+
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
1 =
2
2
1
2
1
2
0
2
tan
tan
tan
x
x
x
Either 1
2
−tanx= (^0)
∴ tanxx==tan ⇒ =+nnZ, ∈
2
1
42 4
π π π
⇒ x n=+ 2 nz∈⇒x n=+ nZ∈
2
41
2
π ππ,(),
or 2
1
2
1
2
02
22
10
2
− +^2
- = ⇒−+=
tan
tan
tan tan
x
x
xx
⇒ = ± −⋅⋅
⋅
tanxi= ±
2
11421
22
17
4
2
⇒ no solution
- (d) : Here a^2 – 4a + 6 = (a – 2)^2 + 2 ≥ 2
∴−+=
∈
min
aR
{,aa^2 }1461
Now, sinsinxx+=cos 1 ⇒^1 x+=cosx
2
1
2
1
2
⇒ sin⎝⎜⎛xxn+ππ π⎞⎠⎟= ⇒ += +π − nπ
44 4
1
4
sin ( )
⇒ xn=+π ()−−∈ 1 nππ,nZ
44
- (b) : We have 1 – 2sin^2 θcos^2 θ = –λ
⇒− 1 1 =−
2
sin^22 θλ
⇒− − 1 1 =−⇒+=−
4
14 3
4
1
4
( cos θλ) cos 4 θλ
∵ –1 ≤ cos4θ ≤ 1
∴− ≤^1 ≤ ⇒ − ≤+ ≤ +
4
1
4
4 1
4
3
4
1
4
3
4
1
4
4 3
4
1
4
cos θθcos
⇒≤−≤⇒−≤≤−^1
2
111
2
λλ
- (c) : From ΔABD, we have
BD
BAD
AD
sin∠ sinB
=
From ΔACD, we have CD
CAD
AD
sin∠ sinC
=
∵ BD : CD = 1 : 3
∴ AD ∠∠BAD =
B
AD CAD
C
sin
sin
: sin
sin
13 :
⇒ ∠∠= ⇒ ∠
∠
sin =
sin
:sin
sin
: sin
sin
BAD CAD BAD
ππ CAD
34
13 2
3
1
3
⇒ ∠
∠
sin =
sin
BAD
CAD
1
6
- (c) : Let the sides of the triangle ABC be 4x, 5x and 7x
∴ = + −
⋅⋅
cosA () () ()xxx=−
xx
547
25 4
1
5
222
⇒ the angle A is an obtuse angle
Thus, ΔABC is obtuse-angled
- (b) : We have (a + b + c)(b + c – a) = λbc
⇒ (b + c)^2 – a^2 = λbc ⇒ b^2 + c^2 – a^2 = (λ – 2)bc
⇒ bca+ − = − ⇒ = −
bc
A
22 2
2
2
2
2
2
λλcos
∵ –1 ≤ cosA ≤ 1
∴−≤ 1 −^2 ≤⇒−≤−≤ ⇒ ≤ ≤
2
λ 122204 λλ
- (b) : Let bc=+=23 2, 23 2− and A=° 60
∴ ⎛⎝⎜ − ⎞⎠⎟= −
+
tan BC bccot =°==°cot tan
bc
A
22
4
43
30 1 45
⇒ B – C = 90°. Again, B + C = 120° (∵ A = 60°)
Therefore the other two angles are B = 105° and
C = 15°.
- (b) : Here A=π−⎛⎝⎜ππ π+ ⎞⎠⎟==°
43
5
12
75.
Now a
A
b
B
b
sin sin sin sin
= ⇒ +
°
=
°
31
75 45
∴ = °
°
b sin +=
sin
(^45) ()
75
31 2