- (b) : We h a v e
22
221
2−cosx= tanxx⇒−⎝⎜⎛ tan ⎟⎞⎠=cosx⇒−⎛⎝⎜ ⎞⎠⎟=−+21
21
2
1
222tantantanxxx⇒−⎛⎝⎜ ⎞⎠⎟ −++⎛⎝⎜
⎜
⎜⎞⎠⎟
⎟
⎟1 =
221
2
1
20
2tantantanxxxEither 1
2−tanx= (^0)
∴ tanxx==tan ⇒ =+nnZ, ∈
2
1
42 4
π π π
⇒ x n=+ 2 nz∈⇒x n=+ nZ∈
2
41
2
π ππ,(),
or 2
1
2
1
2
02
22
10
2
− +^2
- = ⇒−+=
tan
tan
tan tan
x
x
xx
⇒ = ± −⋅⋅
⋅
tanxi= ±
2
11421
22
17
4
2
⇒ no solution
- (d) : Here a^2 – 4a + 6 = (a – 2)^2 + 2 ≥ 2
∴−+=
∈min
aR{,aa^2 }1461Now, sinsinxx+=cos 1 ⇒^1 x+=cosx
21
21
2
⇒ sin⎝⎜⎛xxn+ππ π⎞⎠⎟= ⇒ += +π − nπ
44 41
4sin ( )⇒ xn=+π ()−−∈ 1 nππ,nZ
44- (b) : We have 1 – 2sin^2 θcos^2 θ = –λ
⇒− 1 1 =−
2sin^22 θλ⇒− − 1 1 =−⇒+=−
414 3
41
4( cos θλ) cos 4 θλ∵ –1 ≤ cos4θ ≤ 1
∴− ≤^1 ≤ ⇒ − ≤+ ≤ +
41
44 1
43
41
43
41
44 3
41
4cos θθcos⇒≤−≤⇒−≤≤−^1
2111
2λλ- (c) : From ΔABD, we have
BD
BADAD
sin∠ sinB=From ΔACD, we have CD
CADAD
sin∠ sinC=
∵ BD : CD = 1 : 3
∴ AD ∠∠BAD =
BAD CAD
Csin
sin: sin
sin13 :⇒ ∠∠= ⇒ ∠
∠sin =
sin:sin
sin: sin
sinBAD CAD BAD
ππ CAD
3413 2
31
3⇒ ∠
∠sin =
sinBAD
CAD1
6- (c) : Let the sides of the triangle ABC be 4x, 5x and 7x
∴ = + −
⋅⋅cosA () () ()xxx=−
xx547
25 41
5222⇒ the angle A is an obtuse angle
Thus, ΔABC is obtuse-angled- (b) : We have (a + b + c)(b + c – a) = λbc
⇒ (b + c)^2 – a^2 = λbc ⇒ b^2 + c^2 – a^2 = (λ – 2)bc
⇒ bca+ − = − ⇒ = −
bcA22 2
22
22
2λλcos∵ –1 ≤ cosA ≤ 1∴−≤ 1 −^2 ≤⇒−≤−≤ ⇒ ≤ ≤
2λ 122204 λλ- (b) : Let bc=+=23 2, 23 2− and A=° 60
∴ ⎛⎝⎜ − ⎞⎠⎟= −
+tan BC bccot =°==°cot tan
bcA
224
4330 1 45⇒ B – C = 90°. Again, B + C = 120° (∵ A = 60°)
Therefore the other two angles are B = 105° and
C = 15°.- (b) : Here A=π−⎛⎝⎜ππ π+ ⎞⎠⎟==°
43
5
1275.Now a
Ab
Bb
sin sin sin sin= ⇒ +
°=
°31
75 45∴ = °
°b sin +=
sin(^45) ()
75
31 2