Mathematics_Today_-_October_2016

(backadmin) #1
SOLUTIONS


  1. (b) : Let θ=π ⇒ θ=π
    16


8
2

Ist and last gives tan^2 θ + cot^2 θ =^8
14


2


cos θ
Similarly other terms.



  1. (c) : fx e()= sin()xx−π[]x cos
    sin(x – [x]) = sin{x}. Period is 1
    cosπx, Period is 2
    Hence f (x) is of period 2

  2. (d) : f(x, y) is homogeneous function of degree
    n ∈ R in x, y if f (kx, ky) = kn f(x, y) ; where k > 0

  3. (c) : (A)lim ln sin


/
x

x x

⎛⎝⎜ − ⎞⎠⎟
0

122 1
2

= ⎛⎝⎜ − ⎞⎠⎟











=




lim ln sin sin lim

sin

x

x

x
x
x

x
0

2

1

(^22)
(^22)
12
2
2
2
00
2 2
(^20)


sin x
x
(B)
lim
ln
lim
ln( )
lim
xh hln[( ) /h]
x
x
h
→→ →h h−−
− =



=−
10 011
1
1
1
1
1
(C)
lim
sin
x tan
xx
x
xx
x


0 − =− =−
3
3
1
6
1
3
1
2



  1. (c)

  2. We h a v e cos


cos
cos

y x
x

= 33
... (1)

=^43 − = 43 −

3
3

cos cos 2
cos

xx sec
x

x

⇒ cos^2 y = 4 – 3sec^2 x = 4 – 3(1 + tan^2 x)
= 1 – 3tan^2 x
⇒ sin^2 y = 3tan^2 x ⇒ sinyx=^3 tan


⇒ cosydy= sec
dx

3 2 x

∴ =

dy
dx x x

3
3

1
cos cos

[()]from


  1. ∵ φ : R → R is continuous at x = a and satisfies
    f(x) – f(a) = φ(x)(x – a) ∀ x ∈ R


⇒ −

fx fa=
xa

() ()φ()x

⇒ −

=
→→

lim () () lim ( )
xa xa

fx fa
xa

φx

⇒ ′ ==

fa a x a
xa

()φφφ() [ lim ()∵ ()]
⇒ f is differentiable at x = a.


  1. Given cosα + cos(α + β) + cos(α + β + γ) = 0
    sinα + sin(α + β) + sin(α + β + γ) = 0
    where β, γ ∈ (0, π)
    ⇒ [cosα + cos(α + β)]^2 + [sinα + sin(α + β)]^2 = 1
    ⇒ 2 + 2[cosβ] = 1
    ∴ cosβ=−^1
    2


.
Similarly, cosγ=−^1
2 ,
∴ βγ==^2 π
3
Now, fx x
x

() sin x
cos

= tan
+

(^2) =
12
and gx() tan= x 2
∴ f′⎛⎜⎝^23 ππ⎟⎠⎞=sec^223 = 4
and lim ( ) tan
x
gx

2 ==
3
π 3 3
π



  1. Let O = (0, 0)


A

x

x x

=

⎡ −




















=−

lim
cos
π ,(,)

π

2

(^2020)
B x
x x
x
= ⎛⎝⎜ ⎞⎠⎟





(^001) → 0 ⎟=
1
, lim tan (, )
/
∴ Area of ΔOAB=^1 −−=
2
20 1 sq. unit



  1. We h a v e al + bm + cn = 0 ... (1)
    fmn + gnl + hlm = 0 ... (2)
    Eliminate n, we get


⇒ ag⎝⎜⎛l⎟⎠⎞ +++()⎜⎛⎝ ⎟⎠⎞+=
m

af bg ch l
m

bf

2
0
... (3)

Now, if l 1 , m 1 , n 1 and l 2 , m 2 , n 2 are d.c.’s of two lines

then roots of (3) are l
m

l
m

1
1

2
2

and.

∴ product of the roots =

l
m

l
m

bf
ag

1
1

2
2

. =


∴ ll =
fa

mm
gb

12 1 2
//

∴ ll ==
fa

mm
gb

nn
hc

12 1 2 1 2
///
∵ lines are perpendicular
∴ l 1 l 2 + m 1 m 2 + n 1 n 2 = 0
⇒ f++=
a

g
b

h
c

(^0) ””

Free download pdf