Mathematics_Today_-_October_2016

(backadmin) #1
SOLUTION SET-165


  1. (c) : Focus is 0 1
    4


⎛⎝⎜, ⎞⎠⎟
P

A(1, 2)

M

S

y=−^14

1
Directrix is y=−^14
4
PS + PA = PM + PA, takes
minimum value when A, P, M are collinear.
∴ Minimum value =+ = 2 1
4

9
4


  1. (a) : The number of all 5 digit numbers is 6! – 5! = 600
    Numbers divisible by 11 without digit 1 are
    23045 with 8 permutations
    32450 with 8 permutations
    Likewise there are 16 numbers without 3 and 16
    numbers without 5
    ∴ The number of numbers divisible by 11 are 16 × 3 = 48
    Probability==^48
    600


2
25


  1. (b) :^1
    1 21212 3


10
r∑= ()()( )rrr− ++
= − + − +


⎝⎜


⎠⎟

(^1) ==
8
1 2
3
1
3
1
21
1
23
40
483
m
n
∴ m + n = 523



  1. (d) : Let α, β be the roots. α + β = –a, αβ = 6a
    Eliminating a, we get (α+ 6)(β + 6) = 36
    ∴ αβ=− 66 +=d − +^36
    d


,
The number of pairs (α, β), is the number of divisors
of 36.
i.e., d = ±1, ±2, ±3, ±4, ± 6
∴ The number of values of a is 10.


  1. (c) : Let a = cos θ, b = sin θ


z = cos  + i sin  = cosθθsin
22

2
⎛⎝⎜ +i ⎞⎠⎟

(^) =




  • = +

    cos sin
    cos sin
    ,
    θθ
    θθ
    22
    22
    i
    i
    ci
    ci
    where,
    c a
    b
    ==cot +cos = +
    sin
    θθ
    2 θ
    11



  1. (a, b, c, d) : sin
    cos


cos
sin

3
3

3
3

θ
θ

θ
θ

+ =+ 12 8
sin^32 θ
⇒sin^6  + cos^6 =^3
2

sin^321 θ+

⇒ 1 3
4

− sin^22 θ=^3
2

sin^321 θ+
⇒ sin^2 2  (2sin 2 + 1) = 0
⇒ sin 2 = –^1
2

= sin^7
6

⎛ π
⎝⎜


⎠⎟

⇒ 2  = nπ+()− 1 n⎛⎝⎜^7 π⎞⎠⎟
6

⇒ (^) θ=+nππ− n θ= ππππ
2
1 7
12
7
12
11
12
19
12
23
12
() ; , , ,



  1. (c) : dx
    dy


−x= y ⇒ xe–y = ∫ye–y dy = –(y + 1)e–y + A
x = 0, y = 0 ⇒ A = 1 and x = ey – (y + 1)
At y = ln 3, dx
dy

= 3 – 1 = 2 ⇒ dy
dx

=^1
2


  1. (d) : ∫ 01 xdy = ∫()ey dyy−− 1
    0


(^1) = e−^5
2



  1. (6) : The minimum number 1 occurs as 2nd, 3rd, ...
    9 th term in the sequence.
    ∴ = ⎛ −
    ⎝⎜



⎠⎟

=⎛
⎝⎜


⎠⎟

+⎛
⎝⎜


⎠⎟

++⎛
⎝⎜


⎠⎟

= − =
=

N ∑r
r

9
1

9
1

9
2

9
2 8 2 2 510

(^99)
...



  1. (P) → 4; (Q) → 1; (R) → 3; (S) → 2
    (P) The desired number is the coefficient of x^10 in
    (x + x^2 + ... + x^6 )^4 or coefficient of x^6 in (1+ x + ... + x^5 )^4
    = (1 – x^6 )^4 (1 – x)–4
    = − ++⎛
    ⎝⎜



⎠⎟

+⎛
⎝⎜


⎠⎟

+


⎝⎜


⎠⎟

( 14 xxx^62 ...) 114 52 ...

Required coefficient =

9
6 484480






⎟− = − =

(Q) a = 2α – 1, b = 2β – 1, c = 2γ – 1, d = 2δ – 1
⇒ α + β + γ + δ = 10
The number of solutions is

9
3

⎛ 84




⎟=

(R) 1215
1
()++^5 =+^2






()xy ⎟()xy++^

5
2 2

5
3 2

⎛ 23




⎟ ++






(xy) ⎟(xy++) ....

The coefficient of xy^2

5
3

=⎛ 32 60




⎟⋅⋅=

(S)

rC
C

rr
r

r r
rrr r

⋅ = − + = −
==− =

∑∑∑


(^11)
10
1
10
1
(^10101)
()() 11
= +++ +=
1098 1 10 11⋅ =
2
... 55
””

Free download pdf