SOLUTION SET-165
- (c) : Focus is 0 1
4
⎛⎝⎜, ⎞⎠⎟
P
A(1, 2)
M
S
y=−^14
1
Directrix is y=−^14
4
PS + PA = PM + PA, takes
minimum value when A, P, M are collinear.
∴ Minimum value =+ = 2 1
4
9
4
- (a) : The number of all 5 digit numbers is 6! – 5! = 600
Numbers divisible by 11 without digit 1 are
23045 with 8 permutations
32450 with 8 permutations
Likewise there are 16 numbers without 3 and 16
numbers without 5
∴ The number of numbers divisible by 11 are 16 × 3 = 48
Probability==^48
600
2
25
- (b) :^1
1 21212 3
10
r∑= ()()( )rrr− ++
= − + − +
⎛
⎝⎜
⎞
⎠⎟
(^1) ==
8
1 2
3
1
3
1
21
1
23
40
483
m
n
∴ m + n = 523
- (d) : Let α, β be the roots. α + β = –a, αβ = 6a
Eliminating a, we get (α+ 6)(β + 6) = 36
∴ αβ=− 66 +=d − +^36
d
,
The number of pairs (α, β), is the number of divisors
of 36.
i.e., d = ±1, ±2, ±3, ±4, ± 6
∴ The number of values of a is 10.
- (c) : Let a = cos θ, b = sin θ
z = cos + i sin = cosθθsin
22
2
⎛⎝⎜ +i ⎞⎠⎟
(^) =
- −
= +
−
cos sin
cos sin
,
θθ
θθ
22
22
i
i
ci
ci
where,
c a
b
==cot +cos = +
sin
θθ
2 θ
11
- (a, b, c, d) : sin
cos
cos
sin
3
3
3
3
θ
θ
θ
θ
+ =+ 12 8
sin^32 θ
⇒sin^6 + cos^6 =^3
2
sin^321 θ+
⇒ 1 3
4
− sin^22 θ=^3
2
sin^321 θ+
⇒ sin^2 2 (2sin 2 + 1) = 0
⇒ sin 2 = –^1
2
= sin^7
6
⎛ π
⎝⎜
⎞
⎠⎟
⇒ 2 = nπ+()− 1 n⎛⎝⎜^7 π⎞⎠⎟
6
⇒ (^) θ=+nππ− n θ= ππππ
2
1 7
12
7
12
11
12
19
12
23
12
() ; , , ,
- (c) : dx
dy
−x= y ⇒ xe–y = ∫ye–y dy = –(y + 1)e–y + A
x = 0, y = 0 ⇒ A = 1 and x = ey – (y + 1)
At y = ln 3, dx
dy
= 3 – 1 = 2 ⇒ dy
dx
=^1
2
- (d) : ∫ 01 xdy = ∫()ey dyy−− 1
0
(^1) = e−^5
2
- (6) : The minimum number 1 occurs as 2nd, 3rd, ...
9 th term in the sequence.
∴ = ⎛ −
⎝⎜
⎞
⎠⎟
=⎛
⎝⎜
⎞
⎠⎟
+⎛
⎝⎜
⎞
⎠⎟
++⎛
⎝⎜
⎞
⎠⎟
= − =
=
N ∑r
r
9
1
9
1
9
2
9
2 8 2 2 510
(^99)
...
- (P) → 4; (Q) → 1; (R) → 3; (S) → 2
(P) The desired number is the coefficient of x^10 in
(x + x^2 + ... + x^6 )^4 or coefficient of x^6 in (1+ x + ... + x^5 )^4
= (1 – x^6 )^4 (1 – x)–4
= − ++⎛
⎝⎜
⎞
⎠⎟
+⎛
⎝⎜
⎞
⎠⎟
+
⎛
⎝⎜
⎞
⎠⎟
( 14 xxx^62 ...) 114 52 ...
Required coefficient =
9
6 484480
⎛
⎝
⎜
⎞
⎠
⎟− = − =
(Q) a = 2α – 1, b = 2β – 1, c = 2γ – 1, d = 2δ – 1
⇒ α + β + γ + δ = 10
The number of solutions is
9
3
⎛ 84
⎝
⎜
⎞
⎠
⎟=
(R) 1215
1
()++^5 =+^2
⎛
⎝
⎜
⎞
⎠
()xy ⎟()xy++^
5
2 2
5
3 2
⎛ 23
⎝
⎜
⎞
⎠
⎟ ++
⎛
⎝
⎜
⎞
⎠
(xy) ⎟(xy++) ....
The coefficient of xy^2
5
3
=⎛ 32 60
⎝
⎜
⎞
⎠
⎟⋅⋅=
(S)
rC
C
rr
r
r r
rrr r
⋅ = − + = −
==− =
∑∑∑
(^11)
10
1
10
1
(^10101)
()() 11
= +++ +=
1098 1 10 11⋅ =
2
... 55