SOLUTION SET-165- (c) : Focus is 0 1
4
⎛⎝⎜, ⎞⎠⎟
PA(1, 2)MSy=−^141
Directrix is y=−^14
4
PS + PA = PM + PA, takes
minimum value when A, P, M are collinear.
∴ Minimum value =+ = 2 1
49
4- (a) : The number of all 5 digit numbers is 6! – 5! = 600
Numbers divisible by 11 without digit 1 are
23045 with 8 permutations
32450 with 8 permutations
Likewise there are 16 numbers without 3 and 16
numbers without 5
∴ The number of numbers divisible by 11 are 16 × 3 = 48
Probability==^48
600
2
25- (b) :^1
1 21212 3
10
r∑= ()()( )rrr− ++
= − + − +⎛
⎝⎜⎞
⎠⎟(^1) ==
8
1 2
3
1
3
1
21
1
23
40
483
m
n
∴ m + n = 523
- (d) : Let α, β be the roots. α + β = –a, αβ = 6a
Eliminating a, we get (α+ 6)(β + 6) = 36
∴ αβ=− 66 +=d − +^36
d
,
The number of pairs (α, β), is the number of divisors
of 36.
i.e., d = ±1, ±2, ±3, ±4, ± 6
∴ The number of values of a is 10.- (c) : Let a = cos θ, b = sin θ
z = cos + i sin = cosθθsin
222
⎛⎝⎜ +i ⎞⎠⎟(^) =
- −
= +
−
cos sin
cos sin
,
θθ
θθ
22
22
i
i
ci
ci
where,
c a
b
==cot +cos = +
sin
θθ
2 θ
11
- (a, b, c, d) : sin
cos
cos
sin3
33
3θ
θθ
θ+ =+ 12 8
sin^32 θ
⇒sin^6 + cos^6 =^3
2sin^321 θ+⇒ 1 3
4− sin^22 θ=^3
2sin^321 θ+
⇒ sin^2 2 (2sin 2 + 1) = 0
⇒ sin 2 = –^1
2= sin^7
6⎛ π
⎝⎜⎞
⎠⎟⇒ 2 = nπ+()− 1 n⎛⎝⎜^7 π⎞⎠⎟
6⇒ (^) θ=+nππ− n θ= ππππ
2
1 7
12
7
12
11
12
19
12
23
12
() ; , , ,
- (c) : dx
dy
−x= y ⇒ xe–y = ∫ye–y dy = –(y + 1)e–y + A
x = 0, y = 0 ⇒ A = 1 and x = ey – (y + 1)
At y = ln 3, dx
dy= 3 – 1 = 2 ⇒ dy
dx=^1
2- (d) : ∫ 01 xdy = ∫()ey dyy−− 1
0
(^1) = e−^5
2
- (6) : The minimum number 1 occurs as 2nd, 3rd, ...
9 th term in the sequence.
∴ = ⎛ −
⎝⎜
⎞
⎠⎟=⎛
⎝⎜⎞
⎠⎟+⎛
⎝⎜⎞
⎠⎟++⎛
⎝⎜⎞
⎠⎟= − =
=N ∑r
r9
19
19
29
2 8 2 2 510(^99)
...
- (P) → 4; (Q) → 1; (R) → 3; (S) → 2
(P) The desired number is the coefficient of x^10 in
(x + x^2 + ... + x^6 )^4 or coefficient of x^6 in (1+ x + ... + x^5 )^4
= (1 – x^6 )^4 (1 – x)–4
= − ++⎛
⎝⎜
⎞
⎠⎟+⎛
⎝⎜⎞
⎠⎟+⎛
⎝⎜⎞
⎠⎟( 14 xxx^62 ...) 114 52 ...Required coefficient =9
6 484480⎛
⎝⎜⎞
⎠⎟− = − =(Q) a = 2α – 1, b = 2β – 1, c = 2γ – 1, d = 2δ – 1
⇒ α + β + γ + δ = 10
The number of solutions is9
3⎛ 84
⎝⎜⎞
⎠⎟=(R) 1215
1
()++^5 =+^2⎛
⎝⎜⎞
⎠()xy ⎟()xy++^5
2 25
3 2⎛ 23
⎝⎜⎞
⎠⎟ ++⎛
⎝⎜⎞
⎠(xy) ⎟(xy++) ....The coefficient of xy^25
3=⎛ 32 60
⎝⎜⎞
⎠⎟⋅⋅=(S)rC
Crr
rr r
rrr r⋅ = − + = −
==− =∑∑∑
(^11)
10
1
10
1
(^10101)
()() 11
= +++ +=
1098 1 10 11⋅ =
2
... 55