SOLUTIONS
- (b) : Let θ=π ⇒ θ=π
16
8
2
Ist and last gives tan^2 θ + cot^2 θ =^8
14
2
−
−
cos θ
Similarly other terms.
- (c) : fx e()= sin()xx−π[]x cos
sin(x – [x]) = sin{x}. Period is 1
cosπx, Period is 2
Hence f (x) is of period 2 - (d) : f(x, y) is homogeneous function of degree
n ∈ R in x, y if f (kx, ky) = kn f(x, y) ; where k > 0 - (c) : (A)lim ln sin
/
x
x x
→
⎛⎝⎜ − ⎞⎠⎟
0
122 1
2
= ⎛⎝⎜ − ⎞⎠⎟
⎡
⎣
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
=
→
−
−
→
lim ln sin sin lim
sin
x
x
x
x
x
x
0
2
1
(^22)
(^22)
12
2
2
2
00
2 2
(^20)
−
sin x
x
(B)
lim
ln
lim
ln( )
lim
xh hln[( ) /h]
x
x
h
→→ →h h−−
− =
−
−
=−
10 011
1
1
1
1
1
(C)
lim
sin
x tan
xx
x
xx
x
→
−
0 − =− =−
3
3
1
6
1
3
1
2
- (c)
- We h a v e cos
cos
cos
y x
x
= 33
... (1)
=^43 − = 43 −
3
3
cos cos 2
cos
xx sec
x
x
⇒ cos^2 y = 4 – 3sec^2 x = 4 – 3(1 + tan^2 x)
= 1 – 3tan^2 x
⇒ sin^2 y = 3tan^2 x ⇒ sinyx=^3 tan
⇒ cosydy= sec
dx
3 2 x
∴ =
⋅
dy
dx x x
3
3
1
cos cos
[()]from
- ∵ φ : R → R is continuous at x = a and satisfies
f(x) – f(a) = φ(x)(x – a) ∀ x ∈ R
⇒ −
−
fx fa=
xa
() ()φ()x
⇒ −
−
=
→→
lim () () lim ( )
xa xa
fx fa
xa
φx
⇒ ′ ==
→
fa a x a
xa
()φφφ() [ lim ()∵ ()]
⇒ f is differentiable at x = a.
- Given cosα + cos(α + β) + cos(α + β + γ) = 0
sinα + sin(α + β) + sin(α + β + γ) = 0
where β, γ ∈ (0, π)
⇒ [cosα + cos(α + β)]^2 + [sinα + sin(α + β)]^2 = 1
⇒ 2 + 2[cosβ] = 1
∴ cosβ=−^1
2
.
Similarly, cosγ=−^1
2 ,
∴ βγ==^2 π
3
Now, fx x
x
() sin x
cos
= tan
+
(^2) =
12
and gx() tan= x 2
∴ f′⎛⎜⎝^23 ππ⎟⎠⎞=sec^223 = 4
and lim ( ) tan
x
gx
→
2 ==
3
π 3 3
π
- Let O = (0, 0)
A
x
x x
=
⎡ −
⎣
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
=−
→
lim
cos
π ,(,)
π
2
(^2020)
B x
x x
x
= ⎛⎝⎜ ⎞⎠⎟
⎛
⎝
⎜
⎞
⎠
(^001) → 0 ⎟=
1
, lim tan (, )
/
∴ Area of ΔOAB=^1 −−=
2
20 1 sq. unit
- We h a v e al + bm + cn = 0 ... (1)
fmn + gnl + hlm = 0 ... (2)
Eliminate n, we get
⇒ ag⎝⎜⎛l⎟⎠⎞ +++()⎜⎛⎝ ⎟⎠⎞+=
m
af bg ch l
m
bf
2
0
... (3)
Now, if l 1 , m 1 , n 1 and l 2 , m 2 , n 2 are d.c.’s of two lines
then roots of (3) are l
m
l
m
1
1
2
2
and.
∴ product of the roots =
l
m
l
m
bf
ag
1
1
2
2
. =
∴ ll =
fa
mm
gb
12 1 2
//
∴ ll ==
fa
mm
gb
nn
hc
12 1 2 1 2
///
∵ lines are perpendicular
∴ l 1 l 2 + m 1 m 2 + n 1 n 2 = 0
⇒ f++=
a
g
b
h
c
(^0)