The Lotus japonicus Genome

(Steven Felgate) #1

Swaminathan S, Morrone D, Wang Q et al (2009)
CYP76M7 is an ent-cassadiene C11α-hydroxylase
defining a second multifunctional diterpenoid biosyn-
thetic gene cluster in rice. Plant Cell 21:3315– 3325
Takos M, Lai D, Mikkelsen L et al (2010) Genetic
screening identifies cyanogenesis-deficient mutants of
Lotus japonicusand reveals enzymatic specificity in
hydroxynitrile glucoside metabolism. Plant Cell
22:1605– 1619
Takos AM, Knudsen C, Lai D et al (2011) Genomic
clustering of cyanogenic glucoside biosynthetic genes
aids their identification in Lotus japonicus and
suggests the repeated evolution of this chemical
defence pathway. Plant J 68:273– 286
Takos AM, Rook F (2012) Why biosynthetic genes for
chemical defense compounds cluster. Trends Plant Sci
17:383– 388
Tava A, Scotti C, Avato P (2011) Biosynthesis of saponins
in the genusMedicago. Phytochem Rev 10:459– 469
Ueda H, Sugimoto Y (2010) Vestitol as a chemical barrier
against intrusion of parasitic plantStriga hermonthica
intoLotus japonicusroots. Biosci Biotechnol Bio-
chem 74:1662– 1667
Wang H, Cui Y, Zhao C (2010) Flavonoids of the genus
Iris(Iridaceae). Mini-Rev Med Chem 10:643– 661


Wilderman PR, Xu M, Jin Y et al (2004) Identification of
syn-pimara-7,15-diene synthase reveals functional
clustering of terpene synthases involved in rice
phytoalexin/allelochemical biosynthesis. Plant Physiol
135:2098– 2105
Winzer T, Gazda V, He Z et al (2012) APapaver
somniferum 10-gene cluster for synthesis of the
anticancer alkaloid noscapine. Science 336:1704– 1708
Wong S, Wolfe KH (2005) Birth of a metabolic gene
cluster in yeast by adaptive gene relocation. Nat Genet
37:777– 782
Xie D-Y, Sharma SB, Paiva NL et al (2003) Role of
anthocyanidin reductase, encoded byBANYULSin
plantflavonoid biosynthesis. Science 299:396– 399
Yoshida K, Iwasaki R, Shimada N et al (2010) Tran-
scriptional control of the dihydroflavonol 4-reductase
multigene family inLotus japonicus. J Plant Res
123:801– 805
Zhao J, Dixon RA (2009) MATE transporter facilitate
vacuolar uptake of epicatechin 3′-O-glucoside for
proanthocyanidin biosynthesis inMedicago truncatula
andArabidopsis. Plant Cell 21:2323– 2340
Zhao J, Pang Y, Dixon RA (2010) The mysteries of
proanthocyanidin transport and polymerization. Plant
Physiol 153:437– 443

162 A.M. Takos and F. Rook

Free download pdf