The Lotus japonicus Genome

(Steven Felgate) #1

Kosslak RM, Bookland R, Barkei J et al (1987) Induction
ofBradyrhizobium japonicumcommonnodgenes by
isoflavones isolated fromGlycine max. Proc Natl Acad
Sci USA 84:7428– 7432
Krokida A, Delis C, Geisler K et al (2013) A metabolic
gene cluster in Lotus japonicus discloses novel
enzyme functions and products in triterpene biosyn-
thesis. New Phytol 200:675– 690
Lapcik O (2007) Isoflavonoids in non-leguminous taxa: a
rarity or a rule? Phytochemistry 68:2909– 2916
Masunaka A, Hyakumachi M, Takenaka S (2011) Plant
growth-promoting fungus,Trichoderma koningisup-
presses isoflavonoid phytoalexin vestitol production
for colonization on/in the roots ofLotus japonicus.
Microbes Environ 26:128– 134
Matsuba Y, Nguyen TTH, Weigert K (2013) Evolution of
a complex locus for terpene biosynthesis inSolanum.
Plant Cell 25:2022– 2036
Mustonen EA, Jokela T, Saastamoinen I et al (2006) High
serumS-equol content in red clover fed ewes: the
classical endocrine disrupter is a single enantiomer.
Environ Chem Lett 3:154– 159
Ohyama K, Suzuki M, Kikuchi J et al (2009) Dual
biosynthetic pathways to phytosterol via cycloartenol
and lanosterol inArabidopsis. Proc Natl Acad Sci
USA 106:725– 730
Paiva NL, Edwards R, Sun Y et al (1991) Stress responses
in alfalfa (Medicago sativaL.) 11. Molecular cloning
and expression of alfalfa isoflavone reductase, a key
enzyme of isoflavonoid phytoalexin biosynthesis.
Plant Mol Biol 17:653– 667
Pang Y, Peel GJ, Wright E et al (2007) Early steps in
proanthocyanidin biosynthesis in the model legume
Medicago truncatula. Plant Physiol 145:601– 615
Pang Y, Peel GJ, Sharma SB et al (2008) A transcript
profiling approach reveals an epicatechin-specific glu-
cosyltransferase expressed in the seed coat ofMedicago
truncatula. Proc Natl Acad Sci USA 105:14210– 14215
Paolocci F, Robbins MP, Madeo L et al (2007) Ectopic
expression of aBasic Helix-Loop-Helixgene transac-
tivates parallel pathways of proanthocyanidin biosyn-
thesis. Structure, expression analysis, and genetic
control ofLeucoanthocyanidin 4-ReductaseandAnth-
ocyanidin Reductase genes inLotus corniculatus.
Plant Physiol 143:504– 516
Patra AK, Saxena J (2011) Exploitation of dietary tannins
to improve rumen metabolism and ruminant nutrition.
J Sci Food Agric 91:24– 37
Proctor RH, McCormick SP, Alexander NJ et al (2009)
Evidence that a secondary metabolic biosynthetic gene
cluster has grown by gene relocation during evolution
of thefilamentous fungusFusarium. Mol Microbiol
74:1128– 1142
Qi X, Bakht S, Leggett M et al (2004) A gene cluster for
secondary metabolism in oat: implications for the
evolution of metabolic diversity in plants. Proc Natl
Acad Sci USA 101:8233– 8238
Quinones M, Miguel M, Aleixandre A (2013) Beneficial
effects of polyphenols on cardiovascular disease.
Pharmacol Res 68:125– 131


Reynaud J, Guilet D, Terreux R et al (2005) Isoflavonoids
in non-leguminous families: an update. Nat Prod Rep
22:504– 515
Rispail N, Hauck B, Bartholomew B et al (2010)
Secondary metabolite profiling of the model legume
Lotus japonicusduring its symbiotic interaction with
Mesorhizobium loti. Symbiosis 50:119– 128
Saito S,Motawia MS, Olsen CEetal (2012) Biosynthesis of
rhodiocyanosides inLotus japonicus: Rhodiocyanoside
A is synthesized from (Z)-2-methylbutanaloxime via
2-methyl-2-butenenitrile. Phytochemistry 77:260– 267
Sawai S, Shindo T, Sato S et al (2006a) Functional and
structural analysis of genes encoding oxidosqualene
cyclases ofLotus japonicus. Plant Sci 170:247– 257
Sawai S, Akashi T, Sakurai N et al (2006b) Plant
lanosterol synthase : divergence of the sterol and
triterpene biosynthetic pathways in eukaryotes. Plant
Cell Physiol 47:673– 677
Seki H, Ohyama K, Sawai S et al (2008) Licorice
β-amyrin 11-oxidase, a cytochrome P450 with a key
role in the biosynthesis of the triterpene sweetener
glycyrrhizin. Proc Natl Acad Sci USA 105:14204– 14209
Shao H, Dixon RA, Wang X (2007) Crystal structure if
vestitone reductase from alfalfa (Medicago sativaL.).
J Mol Biol 369:265– 276
Shimada N, Akashi T, Aoki T et al (2000) Induction of
isoflavonoid pathway in the model legumeLotus japo-
nicus: molecular characterization of enzymes involved
in phytoalexin biosynthesis. Plant Sci 160:37– 47
Shimada N, Aoki T, Sato S et al (2003) A cluster of genes
encodes the two types of chalcone isomerase involved
in the biosynthesis of generalflavonoids and legume-
specific 5-deoxy(iso)flavonoids inLotus japonicus.
Plant Physiol 131:941– 951
Shimada N, Sasaki R, Sato S et al (2005) A comprehensive
analysis of six dihydroflavonol 4-reductases encoded
by a gene cluster of theLotus japonicusgenome. J Exp
Bot 56:2573– 2585
Shimada N, Sato S, Akashi T et al (2007) Genome-wide
analyses of the structural gene families involved in the
legume-specific 5-deoxyisoflavonoid biosynthesis of
Lotus japonicus. DNA Res 14:25– 36
Shimamura M, Akashi T, Sakurai N et al (2007) 2-
Hydroxyisoflavanone dehydratase is a critical deter-
minant of isoflavone productivity in hairy root cultures
ofLotus japonicus. Plant Cell Physiol 48:1652– 1657
Shimura K, Okada A, Okada K et al (2007) Identification
of a biosynthetic gene cluster in rice for momilactones.
J Biol Chem 282:34013– 34018
Sivakumaran S, Rumball W, Lane GA (2006) Variation
of proanthocyanidins inLotusspecies. J Chem Ecol
32:1797– 1816
Skadhauge B, Gruber MY, Thomsen KK et al (1997)
Leucocyanidin reductase activity and accumulation of
proanthocyanidins in developing legume tissue. Am J
Bot 84:494– 503
Slot JC, Rokas A (2010) MultipleGALpathway gene
clusters evolved independently and by different
mechanisms in fungi. Proc Natl Acad Sci USA
107:10136– 10141

14 Plant-Specialized Metabolism and Its Genomic Organization... 161

Free download pdf