439
network bisects Xenopus laevis stage I oocytes along the future A/V axis. Eur J Cell Biol
89(7):525–536. doi:10.1016/j.ejcb.2009.12.007
Vaccaro MC, Wilding M, Dale B, Campanella C, Carotenuto R (2012) Expression of XNOA 36 in
the mitochondrial cloud of Xenopus laevis oocytes. Zygote 20(3):237–242. doi:10.1017/
s0967199411000037
Valdez Magana G, Rodriguez A, Zhang H, Web R, Alberio R (2014) Paracrine effects of embryo-
derived FGF4 and BMP4 during pig trophoblast elongation. Dev Biol 387(1):15–27.
doi:10.1016/j.ydbio.2014.01.008
Vasudevan S, Seli E, Steitz JA (2006) Metazoan oocyte and early embryo development program: a
progression through translation regulatory cascades. Genes Dev 20(2):138–146. doi:10.1101/
gad.1398906
Venkatarama T, Lai F, Luo X, Zhou Y, Newman K, King ML (2010) Repression of zygotic gene
expression in the Xenopus germline. Development 137(4):651–660. doi:10.1242/dev.038554
Villalpando I, Merchant-Larios H (1990) Determination of the sensitive stages for gonadal sex-
reversal in Xenopus laevis tadpoles. Int J Dev Biol 34(2):281–285
Voronina E, Seydoux G, Sassone-Corsi P, Nagamori I (2011) RNA granules in germ cells. Cold
Spring Harb Perspect Biol 3(12). doi:10.1101/cshperspect.a002774
Wang Y, Opperman L, Wickens M, Hall TM (2009) Structural basis for specific recognition of
multiple mRNA targets by a PUF regulatory protein. Proc Natl Acad Sci U S A 106(48):20186–
- doi:10.1073/pnas.0812076106
Weber S, Eckert D, Nettersheim D, Gillis AJ, Schafer S, Kuckenberg P, Ehlermann J, Werling U,
Biermann K, Looijenga LH, Schorle H (2010) Critical function of AP-2 gamma/TCFAP2C in
mouse embryonic germ cell maintenance. Biol Reprod 82(1):214–223. doi:10.1095/
biolreprod.109.078717
Wei KH, Liu IH (2014) Heparan sulfate glycosaminoglycans modulate migration and survival in
zebrafish primordial germ cells. Theriogenology 81(9):1275–1285. doi:10.1016/j.theriogenol-
ogy.2014.02.009, e1271–e1272
Weidinger G, Stebler J, Slanchev K, Dumstrei K, Wise C, Lovell-Badge R, Thisse C, Thisse B,
Raz E (2003) dead end, a novel vertebrate germ plasm component, is required for zebrafish
primordial germ cell migration and survival. Curr Biol 13(16):1429–1434
Weidinger G, Wolke U, Koprunner M, Klinger M, Raz E (1999) Identification of tissues and pat-
terning events required for distinct steps in early migration of zebrafish primordial germ cells.
Development 126(23):5295–5307
Weidinger G, Wolke U, Koprunner M, Thisse C, Thisse B, Raz E (2002) Regulation of zebrafish
primordial germ cell migration by attraction towards an intermediate target. Development
129(1):25–36
Weissman A (1898) The germ plasm: a theory of heredity. Charles Scribner’s Sons, New York
Wen J, Liu L, Song G, Tang B, Li Z (2010) Biallele expression of PEG10 gene in primordial germ
cells derived from day 27 porcine fetuses. Reprod Domest Anim 45(6):e375–e381. doi:10.1111/
j.1439-0531.2010.01581.x, RDA1581
Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio),
4th edn. University of Oregon Press, Eugene
Whitfield T, Heasman J, Wylie C (1993) XLPOU-60, a Xenopus POU-domain mRNA, is oocyte-
specific from very early stages of oogenesis, and localised to presumptive mesoderm and ecto-
derm in the blastula. Dev Biol 155(2):361–370. doi:10.1006/dbio.1993.1035
Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RH, Cuppen E (2003) Efficient target-
selected mutagenesis in zebrafish. Genome Res 13(12):2700–2707. doi:10.1101/gr.1725103
Wilk K, Bilinski S, Dougherty M, Kloc M (2004) Delivery of germinal granules and localized
RNAs via the messenger transport organizer pathway to the vegetal cortex of Xenopus oocytes
occurs through directional expansion of the mitochondrial cloud. Int J Dev Biol 49:17–21.
doi:10.1387/ijdb.041906kw
Williams MA, Smith LD (1971) Ultrastructure of the “germinal plasm” during maturation and
early cleavage in Rana pipiens. Dev Biol 25(4):568–580
8 Mechanisms of Vertebrate Germ Cell Determination