Exercise for Cardiovascular Disease Prevention and Treatment From Molecular to Clinical, Part 1

(Elle) #1

225



  1. Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk
    and compensation. Trends Biochem Sci 36:320–328

  2. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metab-
    olism. Nature 414:799–806

  3. Zeng G, Nystrom FH, Ravichandran LV et al (2000) Roles for insulin receptor, PI3-kinase,
    and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular
    endothelial cells. Circulation 101:1539–1545

  4. Taniguchi CM, Kondo T, Sajan M et al (2006) Divergent regulation of hepatic glucose and
    lipid metabolism by phosphoinositide 3-kinase via Akt and PKClambda/zeta. Cell Metab
    3:343–353

  5. Fischer Y, Thomas J, Sevilla L et al (1997) Insulin-induced recruitment of glucose transporter
    4 (GLUT4) and GLUT1 in isolated rat cardiac myocytes. Evidence of the existence of differ-
    ent intracellular GLUT4 vesicle populations. J Biol Chem 272:7085–7092

  6. XL D, Edelstein D, Rossetti L et al (2000) Hyperglycemia-induced mitochondrial superoxide
    overproduction activates the hexosamine pathway and induces plasminogen activator inhibi-
    tor- 1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A 97:12222–12226

  7. Nishikawa T, Edelstein D, XL D et al (2000) Normalizing mitochondrial superoxide produc-
    tion blocks three pathways of hyperglycaemic damage. Nature 404:787–790

  8. Inoguchi T, Battan R, Handler E et  al (1992) Preferential elevation of protein kinase C
    isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differen-
    tial reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci U S A
    89:11059–11063

  9. Igarashi M, Wakasaki H, Takahara N et al (1999) Glucose or diabetes activates p38 mitogen-
    activated protein kinase via different pathways. J Clin Investig 103:185–195

  10. Hattori Y, Hattori S, Sato N et al (2000) High-glucose-induced nuclear factor kappaB activa-
    tion in vascular smooth muscle cells. Cardiovasc Res 46:188–197

  11. Way KJ, Isshiki K, Suzuma K et al (2002) Expression of connective tissue growth factor is
    increased in injured myocardium associated with protein kinase C beta2 activation and dia-
    betes. Diabetes 51:2709–2718

  12. Yamaguchi H, Igarashi M, Hirata A et  al (2004) Altered PDGF-BB-induced p38 MAP
    kinase activation in diabetic vascular smooth muscle cells: roles of protein kinase C-delta.
    Arterioscler Thromb Vasc Biol 24:2095–2101

  13. Tabit CE, Shenouda SM, Holbrook M et al (2013) Protein kinase C-beta contributes to impaired
    endothelial insulin signaling in humans with diabetes mellitus. Circulation 127:86–95

  14. Wakasaki H, Koya D, Schoen FJ et al (1997) Targeted overexpression of protein kinase C beta2
    isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci U S A 94:9320–9325

  15. Inoguchi T, Li P, Umeda F et al (2000) High glucose level and free fatty acid stimulate reac-
    tive oxygen species production through protein kinase C-dependent activation of NAD(P)H
    oxidase in cultured vascular cells. Diabetes 49:1939–1945

  16. Chen F, Yu Y, Haigh S et al (2014) Regulation of NADPH oxidase 5 by protein kinase C
    isoforms. PLoS One 9:e88405

  17. Connelly KA, Kelly DJ, Zhang Y et  al (2009) Inhibition of protein kinase C-beta by
    ruboxistaurin preserves cardiac function and reduces extracellular matrix production in dia-
    betic cardiomyopathy. Circ Heart Fail 2:129–137

  18. Loganathan R, Novikova L, Boulatnikov IG et al (2012) Exercise-induced cardiac perfor-
    mance in autoimmune (type 1) diabetes is associated with a decrease in myocardial diacylg-
    lycerol. J Appl Physiol (1985) 113:817–826

  19. Gonzalez RG, Barnett P, Aguayo J et al (1984) Direct measurement of polyol pathway activ-
    ity in the ocular lens. Diabetes 33:196–199

  20. Iwata K, Nishinaka T, Matsuno K et al (2007) The activity of aldose reductase is elevated in
    diabetic mouse heart. J Pharmacol Sci 103:408–416

  21. Tang WH, Cheng WT, Kravtsov GM et  al (2010) Cardiac contractile dysfunction during
    acute hyperglycemia due to impairment of SERCA by polyol pathway-mediated oxidative
    stress. Am J Physiol Cell Physiol 299:C643–C653


12 Exercise Amaliorates Metabolic Disturbances and Oxidative Stress in Diabetic...

Free download pdf