Exercise for Cardiovascular Disease Prevention and Treatment From Molecular to Clinical, Part 1

(Elle) #1

312


Table 17.2

Characterization of pre-clinical models of Pulmonary Arterial Hypertension and summary of the main changes induced by exercise training

PA H


Species and weight or age

a

Mode of exercise

Cardiac afterload

b

Cardiac function

c

Cardiac hypertrophy

PA hypertrophy

References

MCT (60 mg/kg)

MWR, ~100 g

AET





NA


[^35


]


MCT (40 mg/kg)

MWR, ~224 g

AET


1




NA


[^34


]


MCT (40 vs. 60 mg/kg)

MWR, 150–175 g

AET


⇔⇑


2

⇔⇓


4


⇔⇑


2

[^33


]


MCT (40 mg/kg)

MSDR, ~300 g

HIIT vs. AET

⇓⇔


3

⇑⇔


5

⇓⇔


6


[^30


]


MCT (60 mg/kg)

MWR, ~146 g

AET



NA



NA


[^26


]


MCT (60 mg/kg)

MWR, ~315 g

AET





NA


[^32


]


MCT (60 mg/kg)

MWR, ~139 g

AET






[^25


]


MCT (60 mg/kg)

MWR, ~200 g

FWR


NA




NA


[^28


]


MCT (60 mg/kg)

MWR, ~206 g

AET





NA


[^31


]


MCT (60 mg/kg)

MWR, 160–180 g

AET


NA


NA



NA


[^86


]


MCT (60 mg/kg)

MWR, 180–200 g

AET






[^27


]


MCT (60 mg/kg)

MWR, 150 g

AET






[^29


]


Hypoxia (PIO

 = 110 Torr) 2

MSDR, 10 weeks

AET


NA


NA



NA


[^81


]


Hypoxia (PIO

 = 70 Torr) 2

MSDR, 200–225 g

AET





NA


[^24


]


Hypoxia (PIO

(^2)



 90 mm hg)

MWR, 300–350 g

AET


NA


NA



NA


[^85


]


Hypoxia (10% O

) 2


MC57BL/6 J


AET



NA




[^84


]


NA


information not available;

MWR


male Wistar rats;

MSDR


male Sprague-Dawley rats; MC57BL/6 J, male C57BL/6 J mice; AET continuous aerobic exercise

training;

HIIT


high intensity interval training;

FRW


free wheel running;


, increased in comparison to sedentary with PAH;


, no change in comparison to

sedentary with PAH;


, decreased in comparison to sedentary with PAH

1 Downhill running;

2 No change in “stable PAH” but increased in “progressive PH”;

3 Decreased with HIIT and no change with AET;

4 No change in “stable

PAH” but decreased in “progressive PAH”;

5 Increased with HIIT but no change in AET;

6 Decreased with HIIT but no change with AET

aWeight or age at the beginning of the study;

bCardiac afterload denotes changes in one or more of the following parameters: pulmonary vascular resistance

(PVR


), right ventricular systolic pressure (

RVSP


), pulmonary arterial pressure (

PA P


), arterial elastance (Ea), pulmonary artery acceleration time (PAAT) or

acceleration time to ejection time ratio (AT/ET);

cCardiac function denotes changes in one or more of the following parameters: cardiac output (

CO


), stroke

volume (

SV


), fractional shortening (

FS


), myocardial acceleration during isovolumic contraction (AIV), isovolumic relaxation time (

IVRT


), tricuspid annular

plane maximal systolic velocity (E

′), tricuspid annular plane systolic excursion (

TAPSE


), end-diastolic pressure (

EDP


), time constant of ventricular pressure

decay (

Ta u

), end-diastolic (

EDPVR


) and end-systolic pressure-volume relationship (

ESPVR


)


D. Moreira-Gonçalves et al.
Free download pdf