Systems Biology (Methods in Molecular Biology)

(Tina Sui) #1
l Inverse problem solving tools for solving inverse problems.
An open-source Python library for modelling and inversion in
geophysics.http://www.fatiando.org/v0.1/api/inversion.html
l PyDSTool is a sophisticated and integrated simulation and
analysis environment for dynamical systems models of physical
systems (ODEs, DAEs, maps, and hybrid systems and bifurca-
tion). PyDSTool is platform independent, written primarily in
Python with some underlying C and Fortran legacy code for fast
solving. PyDSTool supports symbolic math, optimization, phase
plane analysis, continuation and bifurcation analysis, data analy-
sis, and other tools for modelling—particularly for biological
applications.http://www.ni.gsu.edu/~rclewley/PyDSTool/
FrontPage.html

We have not had any problems to install and run the above
mentioned software, but check the different releases be compatible.
The python version was 2.7.

References



  1. Brenner S (2010) Sequences and conse-
    quences. Philos Trans R Soc B Biol Sci
    365:207–212. doi:10.1098/rstb.2009.0221

  2. Sethna J. http://sethna.lassp.cornell.edu/
    research/what_is_sloppiness

  3. Gutenkunst RN (2008) Sloppiness, modelling
    and evolution in biochemical networks. Thesis,
    Cornell University, Ithaca

  4. Gutenkunst RN, Casey FP, Waterfall JJ, Myers
    CR, Sethna JP (2007) Extracting falsifiable pre-
    dictions from sloppy models. Reverse engineer-
    ing biological networks: opportunities and
    challenges in computational methods for path-
    way inference. Ann N Y Acad Sci
    1115:203–211. doi:10.1196/annals.1407.003

  5. Gutenkunst RN, Waterfall JJ, Casey FP, Brown
    KS, Myers CR, Sethna JP (2007) Universally
    sloppy parameter sensitivities in systems biol-
    ogy models. PLoS Comput Biol 3:1871–1878.
    doi:10.1371/journal.pcbi.0030189

  6. Gutenkunst RN, Casey FP, Waterfall JJ, Atlas
    JC, Kuczenski RS (2007) SloppyCell.http://
    sloppycell.sourceforge.net

  7. Karlsson J, Anguelova M, Jirstrand M (2012)
    An efficient method for structural identifiability
    analysis of large dynamic systems. In: 16th
    IFAC proc. vol., pp 941–946. doi:dx.doi.
    org/10.3182/20120711-3-BE-2027.00381

  8. Anguelova M, Karlsson J, Jirstrand M (2012)
    Minimal output sets for identifiability. Math
    Biosci 239:139–153. doi:10.1016/j.
    mbs.2012.04.005
    9. Raue A, Karlsson J, Saccomani MP,
    Jirstrand M, Timmer J (2014) Comparison of
    approaches for parameter identifiability analysis
    of biological systems. Bioinformatics
    30:1440–1448. doi:10.1093/bioinformatics/
    btu006

  9. Oana CT, Banga JR, Balsa-Canto E (2011)
    Structural identifiability of systems biology
    models: a critical comparison of methods.
    PloS One 6:e27755. doi:10.1371/journal.
    pone.0027755

  10. Dila ̃o R, Muraro D (2010) A software tool to
    model genetic regulatory networks. Applica-
    tions to the modeling of threshold phenomena
    and of spatial patterning in Drosophila. PLoS
    One 5(5). doi:dx.doi.org/10.1371/journal.
    pone.0010743

  11. Shapiro BE, Levchenko A, Wold BJ, Meyero-
    witz EM, Mjolsness ED (2003) Cellerator:
    extending a computer algebra system to
    include biochemical arrows for signal transduc-
    tion modeling. Bioinformatics 19(5):677–678.
    doi:10.1093/bioinformatics/btg042

  12. Sedoglavic A (2002) A probabilistic algorithm
    to test local algebraic observability in polyno-
    mial time. J Symb Comput 33:735–755.
    http://dx.doi.org/10.1006/jsco.2002.0532

  13. Sedoglavic A (2007) Reduction of algebraic
    parametric systems by rectification of their
    affine expanded lie symmetries. In: Proceedings
    of 2nd international conference on algebraic
    biology, 2–4 July 2007. doi:10.1007/978-3-
    540-73433-8_20


Inverse Problems in Systems Biology 93
Free download pdf