l Inverse problem solving tools for solving inverse problems.
An open-source Python library for modelling and inversion in
geophysics.http://www.fatiando.org/v0.1/api/inversion.html
l PyDSTool is a sophisticated and integrated simulation and
analysis environment for dynamical systems models of physical
systems (ODEs, DAEs, maps, and hybrid systems and bifurca-
tion). PyDSTool is platform independent, written primarily in
Python with some underlying C and Fortran legacy code for fast
solving. PyDSTool supports symbolic math, optimization, phase
plane analysis, continuation and bifurcation analysis, data analy-
sis, and other tools for modelling—particularly for biological
applications.http://www.ni.gsu.edu/~rclewley/PyDSTool/
FrontPage.html
We have not had any problems to install and run the above
mentioned software, but check the different releases be compatible.
The python version was 2.7.
References
- Brenner S (2010) Sequences and conse-
quences. Philos Trans R Soc B Biol Sci
365:207–212. doi:10.1098/rstb.2009.0221 - Sethna J. http://sethna.lassp.cornell.edu/
research/what_is_sloppiness - Gutenkunst RN (2008) Sloppiness, modelling
and evolution in biochemical networks. Thesis,
Cornell University, Ithaca - Gutenkunst RN, Casey FP, Waterfall JJ, Myers
CR, Sethna JP (2007) Extracting falsifiable pre-
dictions from sloppy models. Reverse engineer-
ing biological networks: opportunities and
challenges in computational methods for path-
way inference. Ann N Y Acad Sci
1115:203–211. doi:10.1196/annals.1407.003 - Gutenkunst RN, Waterfall JJ, Casey FP, Brown
KS, Myers CR, Sethna JP (2007) Universally
sloppy parameter sensitivities in systems biol-
ogy models. PLoS Comput Biol 3:1871–1878.
doi:10.1371/journal.pcbi.0030189 - Gutenkunst RN, Casey FP, Waterfall JJ, Atlas
JC, Kuczenski RS (2007) SloppyCell.http://
sloppycell.sourceforge.net - Karlsson J, Anguelova M, Jirstrand M (2012)
An efficient method for structural identifiability
analysis of large dynamic systems. In: 16th
IFAC proc. vol., pp 941–946. doi:dx.doi.
org/10.3182/20120711-3-BE-2027.00381 - Anguelova M, Karlsson J, Jirstrand M (2012)
Minimal output sets for identifiability. Math
Biosci 239:139–153. doi:10.1016/j.
mbs.2012.04.005
9. Raue A, Karlsson J, Saccomani MP,
Jirstrand M, Timmer J (2014) Comparison of
approaches for parameter identifiability analysis
of biological systems. Bioinformatics
30:1440–1448. doi:10.1093/bioinformatics/
btu006 - Oana CT, Banga JR, Balsa-Canto E (2011)
Structural identifiability of systems biology
models: a critical comparison of methods.
PloS One 6:e27755. doi:10.1371/journal.
pone.0027755 - Dila ̃o R, Muraro D (2010) A software tool to
model genetic regulatory networks. Applica-
tions to the modeling of threshold phenomena
and of spatial patterning in Drosophila. PLoS
One 5(5). doi:dx.doi.org/10.1371/journal.
pone.0010743 - Shapiro BE, Levchenko A, Wold BJ, Meyero-
witz EM, Mjolsness ED (2003) Cellerator:
extending a computer algebra system to
include biochemical arrows for signal transduc-
tion modeling. Bioinformatics 19(5):677–678.
doi:10.1093/bioinformatics/btg042 - Sedoglavic A (2002) A probabilistic algorithm
to test local algebraic observability in polyno-
mial time. J Symb Comput 33:735–755.
http://dx.doi.org/10.1006/jsco.2002.0532 - Sedoglavic A (2007) Reduction of algebraic
parametric systems by rectification of their
affine expanded lie symmetries. In: Proceedings
of 2nd international conference on algebraic
biology, 2–4 July 2007. doi:10.1007/978-3-
540-73433-8_20
Inverse Problems in Systems Biology 93