Caspases,Paracaspases, and Metacaspases Methods and Protocols

(Wang) #1

38



  1. Agard NJ, Wells JA (2009) Methods for the
    proteomic identification of protease substrates.
    Curr Opin Chem Biol 13:503–509

  2. Demon D et al (2009) Caspase substrates:
    easily caught in deep waters? Trends Biotechnol
    27:680–688

  3. Luthi AU, Martin SJ (2007) The CASBAH: a
    searchable database of caspase substrates. Cell
    Death Differ 14:641–650

  4. Igarashi Y et al (2007) CutDB: a proteolytic
    event database. Nucleic Acids Res 35:
    D546–D549

  5. Timmer JC et al (2009) Structural and kinetic
    determinants of protease substrates. Nat Struct
    Mol Biol 16:1101–1108

  6. Muppidi JR et al (2006) Homotypic FADD
    interactions through a conserved RXDLL
    motif are required for death receptor-induced
    apoptosis. Cell Death Differ 13:1641–1650

  7. Bouchier-Hayes L et al (2009) Characterization
    of cytoplasmic caspase-2 activation by induced
    proximity. Mol cell 35:830–840

  8. Vegran F, Boidot R, Solary E, Lizard-Nacol S
    (2011) A short caspase-3 isoform inhibits
    chemotherapy- induced apoptosis by blocking
    apoptosome assembly. PLoS One 6:e29058

  9. Kamada S, Kikkawa U, Tsujimoto Y, Hunter T
    (2005) Nuclear translocation of caspase-3 is
    dependent on its proteolytic activation and rec-
    ognition of a substrate-like protein(s). J Biol
    Chem 280:857–860

  10. Beaudouin J, Liesche C, Aschenbrenner S,
    Horner M, Eils R (2013) Caspase-8 cleaves its
    substrates from the plasma membrane upon
    CD95-induced apoptosis. Cell Death Differ
    20:599–610

  11. Arakawa T et al (2007) Suppression of protein
    interactions by arginine: a proposed mecha-
    nism of the arginine effects. Biophys Chem
    127:1–8

  12. Baynes BM, Wang DI, Trout BL (2005) Role of
    arginine in the stabilization of proteins against
    aggregation. Biochemistry 44:4919–4925

  13. Arakawa T, Tsumoto K (2003) The effects of
    arginine on refolding of aggregated proteins:
    not facilitate refolding, but suppress aggrega-
    tion. Biochem Biophys Res Commun 304:
    148–152

  14. Reddy KR, Lilie H, Rudolph R, Lange C
    (2005) L-Arginine increases the solubility of
    unfolded species of hen egg white lysozyme.
    Protein Sci 14:929–935

  15. McStay GP, Salvesen GS, Green DR (2008)
    Overlapping cleavage motif selectivity of cas-
    pases: implications for analysis of apoptotic
    pathways. Cell Death Differ 15:322–331
    24. Schecter I, Berger M (1967) On the size of the
    active site in proteases. Biochem Biophys Res
    Commun 27:157–162
    25. Talanian RV et al (1997) Substrate specificities
    of caspase family proteases. J Biol Chem 272:
    9677–9682
    26. Mace PD, Riedl SJ (2010) Molecular cell death
    platforms and assemblies. Curr Opin Cell Biol
    22:828–836
    27. Renatus M, Stennicke HR, Scott FL,
    Liddington RC, Salvesen GS (2001) Dimer
    formation drives the activation of the cell death
    protease caspase 9. Proc Natl Acad Sci U S A
    98:14250–14255
    28. Baliga BC, Read SH, Kumar S (2004) The bio-
    chemical mechanism of caspase-2 activation.
    Cell Death Differ 11:1234–1241
    29. Wachmann K et al (2010) Activation and speci-
    ficity of human caspase-10. Biochemistry
    49:8307–8315
    30. Boatright KM et al (2003) A unified model for
    apical caspase activation. Mol Cell 11:529–541
    31. Pop C, Timmer J, Sperandio S, Salvesen GS
    (2006) The apoptosome activates caspase-9 by
    dimerization. Mol Cell 22:269–275
    32. Boucher D, Blais V, Denault JB (2012)
    Caspase-7 uses an exosite to promote poly(ADP
    ribose) polymerase 1 proteolysis. Proc Natl
    Acad Sci U S A 109:5669–5674
    33. Janicke RU, Sprengart ML, Wati MR, Porter
    AG (1998) Caspase-3 is required for DNA
    fragmentation and morphological changes
    associated with apoptosis. J Biol Chem 273:
    9357–9360
    34. Soule HD, Vazguez J, Long A, Albert S,
    Brennan M (1973) A human cell line from a
    pleural effusion derived from a breast carci-
    noma. J Natl Cancer Inst 51:1409–1416
    35. Denault JB et al (2006) Engineered hybrid
    dimers: tracking the activation pathway of cas-
    pase- 7. Mol Cell 23:523–533
    36. Pop C et al (2011) FLIPL induces caspase 8
    activity in the absence of interdomain caspase 8
    cleavage and alters substrate specificity.
    Biochem J 433:447–457
    37. Stennicke HR et al (1999) Caspase-9 can be
    activated without proteolytic processing. J Biol
    Chem 274:8359–8362
    38. Boucher D, Blais V, Drag M, Denault JB (2011)
    Molecular determinants involved in activation
    of caspase 7. Biosci Rep 31:283–294
    39. Araya R, Takahashi R, Nomura Y (2002) Yeast
    two-hybrid screening using constitutive-active
    caspase-7 as bait in the identification of
    PA28gamma as an effector caspase substrate.
    Cell Death Differ 9:322–328


Dave Boucher et al.

http://www.ebook3000.com
Free download pdf