2018-10-01_Physics_For_You

(backadmin) #1

M =


φ
i

Ÿ M


a
R

=


μ 0 2
272 / =

μ 0 2
2 2

a
p/R
? p = 7


  1. (a) : C^1


L

L
Þ

C 2 C+^12 C
We know that q = qm cos Zt

i = qmZ cos ωt+π



2 


, i = i 0 cosωt+π
2
Maximum current i 0 = qmZ

where ω=
()+









1


LC 12 C


Maximum charge on (C 1 + C 2 )

qm =

i

(^0) iL 01 CC 2
ω


=+()


Maximum charge on C 1

=
+

×+()


C


CC


(^1) iLCC
12
012 = iC


L


(^01) CC 12 +



  1. (b) : In LC oscillation energy is transferred C to L
    or L to C.


Maximum energy in L =

1


2


LImax^2

Maximum energy in C =

q
C

max

2

2

Equal energy will be when

1


2


LI^2 =


1


2


1


2


LI^2


max









I =


1


2


Imax Ÿ I = Imax sinZt =

1


2


Imax

Zt =

π
4

or

2 π
T

t =

π
4

or t =

T


8


t =

1


8


2 π LC =

π
4

LC



  1. (c) : UU


U


max
==^1 , max
220

LI^2


⇒=










1


2


1


2


1


2


2
0

LI LI^2


⇒−Ie− =
t I
0

220

2
1
2

[]/τ

⇒=−=


− −


et/τ 1

1


2


21


2


⇒−=


 −









t
τ

ln

21


(^2)
⇒=










t τln^2
21

⇒=











t L
R

ln^2
21


  1. (c) : For (LR) circuit


cos q =^3
5

Ÿ q = 53° Ÿ XL =

4


3


R 1


For (CR) circuit, cosθθ=⇒=⇒=

1


2


60 XRC (^32)
In LCR, power factor is 1 i.e., (XC – XL) is zero.
? (^) XXLC=⇒^4 RR=
3


123 Ÿ^


R


R


2
1

4


33


=



  1. (c) : e equation of a semi-circular wave is
    x^2 + y^2 = a^2 or y^2 = a^2 – x^2


I
a
aydx

a
rms= −

+

1


2


2

I


a

axdx
a

221 a 2
rms 2

=−



+
∫ ()

=−− =−

+


+

1


2


1


23


22 2

3

a

axdx
a

ax

x
a

a

a

a
()

=−+−







=


1


233


2


3


3

3
3

32

a

a

a
a

aa

I


a
rms==a

2


3


2


3


2


  1. (b) : As resistance of the lamp


R

V


P


==s =

2

0

1002


50


200 Ω


e rms value of current is

I

V


R


== =


100


200


1


2


A.


So when the lamp is put in series with a capacitance
and run at 200 V ac, from V = IZ, we have

Z

V


I


== =


200


12


400


(/)



Now as in case of CR circuit,ZR
C

=+^2  


1 2


ω

i.e., R
C

2

1 2


+  = 160000


ω

or,

1


16 10 200 12 10


2
42 4
ωC






 =×−=() ×


(^1) 12 10 2
ωC



C=


××


1


100 π 12 10^2

F==^100


12


50


π 3

μ
π

FFμ


  1. (d) : e


d
dt

Na

dB
dt

=− ==


φ 2
5 volt


  1. (d) : Aer a long time, steady state is reached in
    which impedance due to inductor (ZL for dc) is

Free download pdf