M =
φ
i M
a
R=
μ 0 2
272 / =μ 0 2
2 2a
p/R
? p = 7- (a) : C^1
LL
ÞC 2 C+^12 C
We know that q = qm cos Zti = qmZ cos ωt+π
2
, i = i 0 cosωt+π
2
Maximum current i 0 = qmZwhere ω=
()+
1
LC 12 C
Maximum charge on (C 1 + C 2 )qm =i(^0) iL 01 CC 2
ω
=+()
Maximum charge on C 1=
+×+()
C
CC
(^1) iLCC
12
012 = iC
L
(^01) CC 12 +
- (b) : In LC oscillation energy is transferred C to L
or L to C.
Maximum energy in L =1
2
LImax^2Maximum energy in C =q
Cmax22Equal energy will be when1
2
LI^2 =
1
2
1
2
LI^2
max
I =
1
2
Imax I = Imax sinZt =1
2
ImaxZt =π
4or2 π
Tt =π
4or t =T
8
t =1
8
2 π LC =π
4LC
- (c) : UU
U
max
==^1 , max
220LI^2
⇒=
1
2
1
2
1
2
2
0LI LI^2
⇒−Ie− =
t I
02202
1
2[]/τ⇒=−=
− −
et/τ 11
2
21
2
⇒−=
−
t
τln21
(^2)
⇒=
−
t τln^2
21⇒=
−
t L
Rln^2
21- (c) : For (LR) circuit
cos q =^3
5 q = 53° XL =4
3
R 1
For (CR) circuit, cosθθ=⇒=⇒=1
2
60 XRC (^32)
In LCR, power factor is 1 i.e., (XC – XL) is zero.
? (^) XXLC=⇒^4 RR=
3
123 ^
R
R
2
14
33
=
- (c) : e equation of a semi-circular wave is
x^2 + y^2 = a^2 or y^2 = a^2 – x^2
I
a
aydxa
rms= −+
∫1
2
2I
aaxdx
a221 a 2
rms 2=−
−+
∫ ()=−− =−+−+
∫1
2
1
23
22 23aaxdx
aaxx
aaaa
()=−+−
=
1
233
2
3
33
332aaa
aaaI
a
rms==a2
3
2
3
2- (b) : As resistance of the lamp
RV
P
==s =201002
50
200 Ω
e rms value of current isIV
R
== =
100
200
1
2
A.
So when the lamp is put in series with a capacitance
and run at 200 V ac, from V = IZ, we haveZV
I
== =
200
12
400
(/)
Ω
Now as in case of CR circuit,ZR
C=+^2
1 2
ωi.e., R
C21 2
+ = 160000
ωor,1
16 10 200 12 10
2
42 4
ωC
=×−=() ×
(^1) 12 10 2
ωC
=×
C=
××
1
100 π 12 10^2F==^100
12
50
π 3μ
πFFμ- (d) : e
d
dtNadB
dt=− ==
φ 2
5 volt- (d) : Aer a long time, steady state is reached in
which impedance due to inductor (ZL for dc) is