SOLUTIONS
- (d) : i =
ε
R
e
Rt
1 − L
−
; i =
12
6
1
6
V 84103
Ω
−
−
×
−
e
t
.
|1 A| = ( 21.
6
A) −^84103
−
×
−
e
t
− ×
−
e
6 t
- (^103) =^1
2
or
6
84 103
t
. × −
= ln 2 t = (.0 693)(^84 .)^10
6
× −^3
= 0.00097 s = 0.97 ms | 1 ms.
- (d) : Vrms =
20
2
V
XL = ZL = (5 × 10–3 H) 2000
rad
s
= 10 :
XC =
1
ωC
=
1
()50 10×^6 . 2000
−F rad
s
= 10 :
R = RR + RL R = 6 : + 4 : = 10 :
Z = ()XXLC−+^22 R
= () 10 ΩΩ−+ 10 22 () 10 Ω = 10 :
Irms =
V
Z
rms =^20
210
V
()Ω
= ()^2 A = 1.4 A
Vvoltmeter = Irms ()XXLC−+RL
22
= () 21 A. () 01 ΩΩ−+ 0422 ()Ω
= 42 V = 5.6 V
- (d) : I =
V
R
=
220 100
20
sin( πt)
I = 11 sin (100pt)
Here peak value = 11 A
It happens for the rst time when (100pt 1 ) =
π
2
t 1 =
1
200
s
e rms value of I =
11
2
.
It happens when (100pt 2 ) =
3
4
π
t 2 =^3
400
(t 2 – t 1 ) =
3
400
–
1
200
=
1
400
s = 2.5 × 10 –3 s.
- (a) : For terminal velocity net force on the rod must
be zero
BIlm==gieI
×
×
,.., =
..
.
02 98.
06 1
98
3
A
Now if e is the emf induced in the rod,
e × I = P = P 1 + P 2
So, e=
+
=
(. .)
(./)
.
076120
983
06 V
Now as this e is generated due to motion of rod with
terminal velocity in the magnetic eld, i.e.,
eBvl v
e
TTBl
===
×
so = ms−
06
06 1
1 1
.
.
Power dissipated across a conductor P
V
R
=
2
i.e., R
V
P
=
2
e resistance are in parallel combination so,
V 1 = V 2 = e
So, R
e
(^1) P
2
1
062
076
== = 047
(.)
.
. Ω
And, R e
(^2) P
2
2
062
12
== = 03
(.)
.
. Ω.
- (b) :
di
dt
= 10^3 A s–1
? Induced emf across inductance, |e| = L
di
dt
|e| = (5 × 10–3) (10^3 ) V = 5 V
Since , the current is decreasing , the polarity of this
emf would be so as to increase the existing current.
e circuit can be redrawn as shown in the gure.
1 W 15V 5 mH B
A I
15V
Now, VA – 5 + 15 + 5 = VB
? VA – VB = –15 V or VB – VA = 15 V
- (d) : B =
μ 0 2
2 2232
iR
()RX+ /
B =
μ 0 2
232232
iR
()RR+ /
=
μ 0 2
24232
iR
()R /
=
μμ 0 2
3
0
22 16
iR
R
i
.. R
=
φ = NBA cos 45° =^2
16
1
2
μ 0 i 2
R
a
φ
μ
=^0
2
82
ia
R
A 1 W 15 V 5 mH B
I