Krohs_00_Pr.indd

(Jacob Rumans) #1

The Cost of Modularity 275


Boogerd, F. C., Bruggeman, F. J., Richardson, R. C., Stephan, A., and Westerhoff, H. V. (2005). Emergence and
its place in nature: A case study of biochemical networks. Synthese, 145: 131–164.
Brandon, R. N. (2005). Evolutionary modules: Conceptual analyses and empirical hypotheses. In: Modularity
(Callebaut, W., and Rasskin-Gutman, D., eds.), 51–60. Cambridge, Mass.: The MIT Press.
Calabretta, R. S., Nolfi , S., Parisi, D., and Wagner, G. P. (2000). Duplication of modules facilitates the evolution
of functional specialization. Artifi cial Life, 6: 69–84.
Callebaut, W. (2005). The ubiquity of modularity. In: Modularity (Callebaut, W., and Rasskin-Gutman, D., eds.),
3–28. Cambridge, Mass.: The MIT Press.
Callebaut, W., and Rasskin-Gutman, D. (eds.). (2005). Modularity: Understanding the Development and Evolu-
tion of Natural Complex Systems. Cambridge, Mass.: The MIT Press.
Cummins, R. (1975). Functional analysis. The Journal of Philosophy, 72: 741–765.
Davidson, E. H., and Erwin, D. H. (2006). Gene regulatory networks and the evolution of animal body plans.
Science, 311: 796–800.
Davidson, E. H., et al. (2002). A genomic regulatory network for development. Science, 295: 1669–1678.
Fell, D. A. (2007). How can we understand metabolism? In: Systems Biology: Philosophical Foundations
(Boogerd, F. C., Bruggeman, F. J., Hofmeyr, J.-H. S., and Westerhoff, H. V., eds.), 87–101. Amsterdam:
Elsevier.
Franz-Odendaal, T. A., and Hall, B. K. (2006). Modularity and sense organs in the blind cavefi sh, Astyanax
mexicanus. Evolution and Development, 8: 94–100.
Friedman, N. (2004). Inferring cellular networks using probabilistic graphical models. Science, 303: 799–805.
Galis, F. (1999). Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox
genes, and cancer. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 285:
19–26.
García, C. L. (2007). Cognitive modularity, biological modularity,and evolvability. Biological Theory, 2:
62–73.
Gerhart, J., and Kirschner, M. (1997). Cells, Embryos, and Evolution. Malden, Mass.: Blackwell Science.
Kardon, G., Heanue, T. A., and Tabin, C. J. (2004). The Pax/Six/Eya/Dach network in development. In: Modular-
ity in Development and Evolution (Schlosser, G., and Wagner, G. P., eds.), 59–80. Chicago: University of Chicago
Press.
Khakhina, L. N. (1992). Concepts of Symbiogenesis (Margulis, L., and McMenamin, M., eds.). New Haven: Yale
University Press (1979 Russian edition, Leningrad).
Kornberg, H. L. (1965). Anaplerotic sequences in microbial metabolism. Angewandte Chemie International
Edition, 4: 558–565.
Koza, J. R., Bennett, F. H. III, Andre, D., Keene, M. A. (1999). Genetic Programming III: Darwinian Invention
& Problem Solving. San Fancisco: Morgan Kauffmann.
Koza, J. R., Mydlowec, W., Lanza, G., Yu, J., and Keane, M. A. (2002). Automated reverse engineering of meta-
bolic pathways from observed data by means of genetic programming. In: Foundations of Systems Biology
(Kitano, H., ed.), 95–121. Cambridge, Mass.: The MIT Press.
Krohs, U. (2004). Eine Theorie biologischer Theorien: Status und Gehalt von Funktionsaussagen und informa-
tionstheoretischen. Modellen. Berlin: Springer.
Krohs, U. (2008a). Co-designing social systems by designing technical artifacts: A conceptual approach. In:
Philosophy and Design: From Engineering to Architecture (Vermaas, P. E., Kroes, P., Light, A., and Moore, S.
A., eds.), 233–245. Dordrecht: Springer.
Krohs, U. (2008b). Functions as based on a concept of general design. Synthese: in press.
Krohs, U., and Callebaut, W. (2007). Data without models merging with models without data. In: Systems
Biology: Philosophical Foundations (Boogerd, F. C., Bruggeman, F. J., Hofmeyr, J.-H. S., and Westerhoff, H.
V., eds.), 181–213. Amsterdam: Elsevier.
Langlois, R. N., and Robertson, P. L. (1992). Networks and innovation in a modular system: Lessons from the
microcomputer and stereo component industries. Research Policy, 21: 297–313.

Free download pdf