AMPK Methods and Protocols

(Rick Simeone) #1

  1. Sidhu JS, Rajawat YS, Rami TG, Gollob MH,
    Wang Z, Yuan R, Marian AJ, DeMayo FJ,
    Weilbacher D, Taffet GE, Davies JK,
    Carling D, Khoury DS, Roberts R (2005)
    Transgenic mouse model of ventricular preex-
    citation and atrioventricular reentrant tachycar-
    dia induced by an AMP-activated protein
    kinase loss-of-function mutation responsible
    for Wolff-Parkinson-White syndrome. Circula-
    tion 111(1):21–29. https://doi.org/10.
    1161/01.CIR.0000151291.32974.D5. 01.
    CIR.0000151291.32974.D5 [pii]

  2. Davies JK, Wells DJ, Liu K, Whitrow HR,
    Daniel TD, Grignani R, Lygate CA, Schneider
    JE, Noel G, Watkins H, Carling D (2006)
    Characterization of the role of gamma2
    R531G mutation in AMP-activated protein
    kinase in cardiac hypertrophy and Wolff-
    Parkinson-White syndrome. Am J Physiol
    Heart Circ Physiol 290(5):H1942–H1951.
    https://doi.org/10.1152/ajpheart.01020.
    2005. 01020.2005 [pii]

  3. Banerjee SK, Ramani R, Saba S, Rager J,
    Tian R, Mathier MA, Ahmad F (2007) A
    PRKAG2 mutation causes biphasic changes in
    myocardial AMPK activity and does not protect
    against ischemia. Biochem Biophys Res Com-
    mun 360(2):381–387. https://doi.org/10.
    1016/j.bbrc.2007.06.067. S0006-291X(07)
    01292-2 [pii]

  4. Mehdirad AA, Fatkin D, DiMarco JP, MacRae
    CA, Wase A, Seidman JG, Seidman CE, Benson
    DW (1999) Electrophysiologic characteristics
    of accessory atrioventricular connections in an
    inherited form of Wolff-Parkinson-White syn-
    drome. J Cardiovasc Electrophysiol 10
    (5):629–635

  5. Patel VV, Arad M, Moskowitz IP, Maguire CT,
    Branco D, Seidman JG, Seidman CE, Berul CI
    (2003) Electrophysiologic characterization and
    postnatal development of ventricular
    pre-excitation in a mouse model of cardiac
    hypertrophy and Wolff-Parkinson-White syn-
    drome. J Am Coll Cardiol 42(5):942–951

  6. Becker AE, Anderson RH (1981) The Wolff-
    Parkinson-White syndrome and its anatomical
    substrates. Anat Rec 201(1):169–177.https://
    doi.org/10.1002/ar.1092010118

  7. Aanhaanen WT, Boukens BJ, Sizarov A,
    Wakker V, de Gier-de Vries C, van Ginneken
    AC, Moorman AF, Coronel R, Christoffels VM
    (2011) Defective Tbx2-dependent patterning
    of the atrioventricular canal myocardium causes
    accessory pathway formation in mice. J Clin
    Invest 121(2):534–544.https://doi.org/10.
    1172/jci44350

  8. Hinson JT, Chopra A, Lowe A, Sheng CC,
    Gupta RM, Kuppusamy R, O’Sullivan J,


Rowe G, Wakimoto H, Gorham J, Zhang K,
Musunuru K, Gerszten RE, SM W, Chen CS,
Seidman JG, Seidman CE (2016) Integrative
analysis of PRKAG2 cardiomyopathy iPS and
microtissue models identifies AMPK as a regu-
lator of metabolism, survival, and fibrosis. Cell
Rep 17(12):3292–3304.https://doi.org/10.
1016/j.celrep.2016.11.066


  1. Hudson ER, Pan DA, James J, Lucocq JM,
    Hawley SA, Green KA, Baba O, Terashima T,
    Hardie DG (2003) A novel domain in
    AMP-activated protein kinase causes glycogen
    storage bodies similar to those seen in heredi-
    tary cardiac arrhythmias. Curr Biol 13
    (10):861–866

  2. Polekhina G, Gupta A, Michell BJ, van
    Denderen B, Murthy S, Feil SC, Jennings IG,
    Campbell DJ, Witters LA, Parker MW, Kemp
    BE, Stapleton D (2003) AMPK beta subunit
    targets metabolic stress sensing to glycogen.
    Curr Biol 13(10):867–871

  3. McBride A, Ghilagaber S, Nikolaev A, Hardie
    DG (2009) The glycogen-binding domain on
    the AMPK beta subunit allows the kinase to act
    as a glycogen sensor. Cell Metab 9(1):23–34.
    https://doi.org/10.1016/j.cmet.2008.11.
    008. S1550-4131(08)00360-4 [pii]

  4. Luptak I, Shen M, He H, Hirshman MF,
    Musi N, Goodyear LJ, Yan J, Wakimoto H,
    Morita H, Arad M, Seidman CE, Seidman JG,
    Ingwall JS, Balschi JA, Tian R (2007) Aberrant
    activation of AMP-activated protein kinase
    remodels metabolic network in favor of cardiac
    glycogen storage. J Clin Invest 117
    (5):1432–1439. https://doi.org/10.1172/
    JCI30658

  5. Gollob MH (2003) Glycogen storage disease
    as a unifying mechanism of disease in the
    PRKAG2 cardiac syndrome. Biochem Soc
    Trans 31(Pt 1):228–231.https://doi.org/10.
    1042/bst0310228

  6. Banerjee SK, McGaffin KR, Huang XN,
    Ahmad F (2010) Activation of cardiac hyper-
    trophic signaling pathways in a transgenic
    mouse with the human PRKAG2 Thr400Asn
    mutation. Biochim Biophys Acta 1802
    (2):284–291. https://doi.org/10.1016/j.
    bbadis.2009.12.001. S0925-4439(09)00294-
    4 [pii]

  7. Bouskila M, Hunter RW, Ibrahim AF,
    Delattre L, Peggie M, van Diepen JA, Voshol
    PJ, Jensen J, Sakamoto K (2010) Allosteric
    regulation of glycogen synthase controls glyco-
    gen synthesis in muscle. Cell Metab 12
    (5):456–466. https://doi.org/10.1016/j.
    cmet.2010.10.006

  8. Kim M, Hunter RW, Garcia-Menendez L,
    Gong G, Yang YY, Kolwicz SC Jr, Xu J,


PRKAG2 syndrome 615
Free download pdf