Evolution, 4th Edition

(Amelia) #1
LC–16 LITERATURE CITED


  1. Charlesworth, J., and A. Eyre-Walker. 2006. The rate of adaptive
    evolution in enteric bacteria. Mol. Biol. Evol. 23: 1348–1356.

  2. Chen, S. D., B. H. Krinsky, and M. Y. Long. 2013. New genes as
    drivers of phenotypic evolution. Nat. Rev. Genet. 14: 645–660.

  3. Deininger, P. L., and M. A. Batzer. 2002. Mammalian retroelements.
    Genome Res. 12: 1455–1465.

  4. de Jong, W. W., W. Hendriks, J. W. M. Mulders, H. Bloemendal.
    1989. Evolution of eye lens crystallins: The stress connection. Trends
    Biochem. Sci. 14: 365–368.
    15a. Demuth, J. P., T. D. Bie, J. E. Stajich, N. Cristianini, and M. W. Hahn.

  5. The evolution of mammalian gene families. PLoS ONE 1: e85.
    doi:10.1371/journal.pone.0000085
    15b. Dobzhansky, Th., and C. Epling. 1944. Contribution to the genetics,
    taxonomy, and ecology of Drosophila pseudoobscura and its relatives.
    Carnegie Institution Publication 554: 111–183.

  6. Drosophila 12 Genomes Consortium. 2007. Evolution of genes and
    genomes on the Drosophila phylogeny. Nature 450: 203–218.

  7. Eyre-Walker, A., and P. D. Keightley. 2007. The distribution of fitness
    effects of new mutations. Nat. Rev. Genet. 8: 610–618.

  8. Friz, C. T. 1968. Biochemical composition of free-living amoebae
    Chaos chaos, Chaos dubia, and Chaos proteus. Comp. Biochem. Physiol.
    26: 81–90.

  9. Galvani, A. P., and J. Novembre. 2005. The evolutionary history of the
    CCR5–Δ32 HIV-resistance mutation. Microb. Infect. 7: 302–309.

  10. Ganley, A. R. D., and T. Kobayashi. 2007. Highly efficient concerted
    evolution in the ribosomal DNA repeats: Total rDNA repeat variation
    revealed by whole-genome shotgun sequence data. Genome Res. 17:
    184–191.

  11. Giovannoni, S. J., and 13 others. 2005. Genome streamlining in a
    cosmopolitan oceanic bacterium. Science 309: 1242–1245.

  12. Gregory, T. R. 2001. Coincidence, coevolution, or causation? DNA
    content, cell size, and the C-value enigma. Biol. Rev. 76: 65–101.

  13. Gregory, T. R. 2005. Genome size evolution in animals. In T. R.
    Gregory (ed.), The Evolution of the Genome (pp. 3–87). Elsevier,
    Burlington, MA.

  14. Guerzoni, D., and A. McLysaght. 2015. New genes from non-coding
    sequence: the role of de novo protein-coding genes in eukaryotic
    evolutionary innovation. Phil. Trans. R. Soc. Lond. B 370: 20140332.

  15. Halligan, D. L., F. Oliver, A. Eyre-Walker, B. Harr, and P. D. Keightley.
    2010. Evidence for pervasive adaptive protein evolution in wild mice.
    PLoS Genet. 6: e1000825.

  16. Hershberg, R., and D. A. Petrov. 2010. Evidence that mutation is
    universally biased towards AT in bacteria. PLoS Genet. 6: e1001115.

  17. Hill, R. W., G. A. Wyse, and M. Anderson. 2016. Animal Physiology.
    Sinauer, Sunderland, MA.

  18. Hillier, L. W., A. Coulson, J. I. Murray, Z. Bao, J. E. Sulston, and R. H.
    Waterston. 2005. Genomics in C. elegans: So many genes, such a little
    worm. Genome Res. 15: 1651–1660.

  19. Hof, A. E. van’t, and 8 others. 2016. The industrial melanism
    mutation in British peppered moths is a transposable element.
    Nature 534: 102–105.

  20. Huvet, M., and M. Stumpf. 2014. Overlapping genes: A window on
    gene evolvability. BMC Genomics 15: 721.

  21. Innan, H., and F. Kondrashov. 2010. The evolution of gene
    duplications: Classifying and distinguishing between models. Nat.
    Rev. Genet. 11: 97–108.

  22. Jones, F. C., and 28 others. 2012. The genomic basis of adaptive
    evolution in threespine sticklebacks. Nature 484: 55–61.

  23. Kasahara, M. 2007. The 2R hypothesis: An update. Curr. Opin.
    Immunol. 19: 547–552.

  24. Kasimova, M. A., D. Granata, and V. Carnevale. 2016. Voltage-gated
    sodium channels: Evolutionary history and distinctive sequence
    features. Curr. Top. Membr. 78: 261–286.

  25. Kawahara, R., and M. Nishida. 2007. Extensive lineage-specific
    gene duplication and evolution of the spiggin multi-gene family in
    stickleback. BMC Evol. Biol. 7: 209.
    36. Kirkpatrick, M. 2010. How and why chromosome inversions evolve.
    PLoS Biol. 8: e1000501.
    37. Kondrashov, F. A. 2012. Gene duplication as a mechanism of
    genomic adaptation to a changing environment. Proc. R. Soc. Lond.,
    Ser. B: Biol. Sci. 279: 5048–5057.
    38. Lamichhaney, S., and 20 others. 2015. Structural genomic changes
    underlie alternative reproductive strategies in the ruff (Philomachus
    pugnax). Nat. Genet. 48: 84–88. Epub.
    39. Lamichhaney, S., and 20 others. 2016. Structural genomic changes
    underlie alternative reproductive strategies in the ruff (Philomachus
    pugnax). Nat. Genet. 48: 84–88.
    40. Li, X. C., M. A. Schuler, and M. R. Berenbaum. 2007. Molecular
    mechanisms of metabolic resistance to synthetic and natural
    xenobiotics. Annu. Rev. Entomol. 52: 231–253.
    41. Lindblad-Toh, K., and 78 others. 2011. A high-resolution map of
    human evolutionary constraint using 29 mammals. Nature 478:
    476–482.
    42. Long, M., E. Betran, K. Thornton, and W. Wang. 2003. The origin of
    new genes: Glimpses from the young and old. Nat. Rev. Genet. 4:
    865–875.
    43. Lynch, M. 2006. Streamlining and simplification of microbial genome
    architecture. Annu. Rev. Microbiol. 60: 327–349.
    44. Lynch, M. 2007. The Origins of Genome Architecture. Sinauer,
    Sunderland, MA.
    45. Lynch, M. 2010. Rate, molecular spectrum, and consequences of
    human mutation. Proc. Natl. Acad. Sci. USA 107: 961–968.
    46. Lysak, M. A., M. A. Koch, J. M. Beaulieu, A. Meister, and I. J. Leitch.
    2009. The dynamic ups and downs of genome size evolution in
    Brassicaceae. Mol. Biol. Evol. 26: 85–98.
    47. McBride, C. S., and 7 others. 2014. Evolution of mosquito preference
    for humans linked to an odorant receptor. Nature 515: 222–227.
    48. McCutcheon, J. P., and N. A. Moran. 2012. Extreme genome
    reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10: 13–26.
    49. Mudge, J. M., and 9 others. 2011. The origins, evolution, and
    functional potential of alternative splicing in vertebrates. Mol. Biol.
    Evol. 28: 2949–2959.
    50. Nachman, M. W., and J. B. Searle. 1995. Why is the house mouse
    karyotype so variable? Trends Ecol. Evolut. 10: 397–402.
    51. Otto, S. P., and J. Whitton. 2000. Polyploid incidence and evolution.
    Annu. Rev. Genet. 34: 401–437.
    52. Pääbo, S. 2014. The human condition—A molecular approach. Cell
    157: 216–226.
    53. Palazzo, A. F., and T. R. Gregory. 2014. The case for junk DNA. PLoS
    Genet. 10.
    54. Pardo-Manuel de Villena, F., and C. Sapienza. 2001. Female meiosis
    drives karyotypic evolution in mammals. Genetics 159: 1179–1189.
    55. Perry, G. H., and 12 others. 2007. Diet and the evolution of human
    amylase gene copy number variation. Nat. Genet. 39: 1256–1260.
    56. Piatigorsky, J. 2007. Gene Sharing and Evolution. Harvard University
    Press, Cambridge, MA.
    57. Plotkin, J. B., and G. Kudla. 2011. Synonymous but not the same: The
    causes and consequences of codon bias. Nat. Rev. Genet. 12: 32–42.
    58. Price, M. N., A. P. Arkin, and E. J. Alm. 2006. The life-cycle of operons.
    PLoS Genet. 2: 859–873.
    59. Reneker, J., and 6 others. 2012. Long identical multispecies elements
    in plant and animal genomes. Proc. Natl. Acad. Sci. USA 109: E1183–
    E1191.
    60. Sadava, D. E., D. M. Hillis, H. C. Heller, and S. D. Hacker. 2017. Life:
    The Science of Biology, 11th ed. Sinauer, Sunderland MA.
    61. Schlotterer, C. 2015. Genes from scratch—the evolutionary fate of de
    novo genes. Trends Genet. 31: 215–219.
    62. Storz, J. F., J. C. Opazo, and F. G. Hoffmann. 2013. Gene duplication,
    genome duplication, and the functional diversification of vertebrate
    globins. Mol. Phylogen. Evol. 66: 469–478.


25_EVOL4E_LIT_CITED.indd 16 3/22/17 1:58 PM

Free download pdf