370 17 Synthetic Biology in Immunotherapy and Stem Cell Therapy Engineering
improved homing and antitumor activity in a Hodgkin tumor model. Blood,
113 (25), 6392–6402.
81 Peng, W., Ye, Y., Rabinovich, B.A. et al. (2010) Transduction of tumor-specific
T cells with CXCR2 chemokine receptor improves migration to tumor and
antitumor immune responses. Clin. Cancer Res., 16 (22), 5458–5468.
82 Zhao, Z., Condomines, M., van der Stegen, S.J.C. et al. (2015) Structural design
of engineered costimulation determines tumor rejection kinetics and persistence
of CAR T cells. Cancer Cell, 28 (4), 415–428.
83 Peggs, K.S. and Quezada, S.A. (2010) Ipilimumab: attenuation of an inhibitory
immune checkpoint improves survival in metastatic melanoma. Expert Rev.
Anticancer Ther., 10 (11), 1697–1701.
84 Callahan, M.K. and Wolchok, J.D. (2013) At the bedside: CTLA-4- and
PD-1-blocking antibodies in cancer immunotherapy. J. Leukocyte Biol., 94
(1), 41–53.
85 Shin, D.S. and Ribas, A. (2015) The evolution of checkpoint blockade as a cancer
therapy: what’s here, what’s next? Curr. Opin. Immunol., 33 , 23–35.
86 Gorelik, L. and Flavell, R.A. (2001) Immune-mediated eradication of tumors
through the blockade of transforming growth factor-beta signaling in T cells.
Nat. Med., 7 (10), 1118–1122.
87 Bendle, G.M., Linnemann, C., Bies, L. et al. (2013) Blockade of TGF-β signaling
greatly enhances the efficacy of TCR gene therapy of cancer. J. Immunol.,
191 (6), 3232–3239.
88 Foster, A.E., Dotti, G., Lu, A. et al. (2008) Antitumor activity of EBV-specific
T lymphocytes transduced with a dominant negative TGF-beta receptor.
J. Immunother., 31 (5), 500–505.
89 Shin, J.H., Park, H.B., and Choi, K. (2016) Enhanced anti-tumor
reactivity of cytotoxic T lymphocytes expressing PD-1 decoy. Immune Netw.,
16 (2), 134.
90 Cherkassky, L., Morello, A., Villena-Vargas, J. et al. (2016) Human CAR T cells
with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition.
J. Clin. Invest., 126 (8), 3130–3144.
91 Ren, J., Zhang, X., Liu, X. et al. (2017) A versatile system for rapid multiplex
genome-edited CAR T cell generation. Oncotarget, 8 (10), 17002–17011.
92 Rupp, L.J., Schumann, K., Roybal, K.T. et al. (2017) CRISPR/Cas9-mediated
PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen
receptor T cells. Sci. Rep., 7 (1), 737.
93 Leen, A.M., Sukumaran, S., Watanabe, N. et al. (2014) Reversal of tumor
immune inhibition using a chimeric cytokine receptor. Mol. Ther., 22 (6),
1211–1220.
94 Mohammed, S., Sukumaran, S., Bajgain, P. et al. (2017) Improving chimeric
antigen receptor-modified T cell function by reversing the immunosuppressive
tumor microenvironment of pancreatic cancer. Mol. Ther., 25 (1), 249–258.
95 Schlenker, R., Olguín-Contreras, L.F., Leisegang, M. et al. (2017) Chimeric
PD-1:28 receptor upgrades low-avidity T cells and restores effector function of
tumor-infiltrating lymphocytes for adoptive cell therapy. Cancer Res., 77 ,
3577–3590.