eferences 369
64 Gardner, R.A., Finney, O., Annesley, C. et al. (2017) Intent to treat leukemia
remission by CD19CAR T cells of defined formulation and dose in children and
young adults. Blood. doi: 10.1182/blood-2017-02-769208
65 Grada, Z., Hegde, M., Byrd, T. et al. (2013) TanCAR: a novel bispecific
chimeric antigen receptor for cancer immunotherapy. Mol. Ther. Nucleic Acids,
2 , e105.
66 Zah, E., Lin, M.-Y., Silva-Benedict, A. et al. (2016) T cells expressing CD19/
CD20 bi-specific chimeric antigen receptors prevent antigen escape by
malignant B cells. Cancer Immunol. Res., 4 (6), 498–508.
67 Zah, E., Lin, M.-Y., Silva-Benedict, A. et al. (2016) ADDENDUM: T cells
expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen
escape by malignant B cells. Cancer Immunol. Res., 4 (7), 639–641.
68 Qin, H., Haso, W., Nguyen, S.M., and Fry, T.J. (2015) Preclinical development
of bispecific chimeric antigen receptor targeting both CD19 and CD22. Blood,
126 (23).
69 Fedorov, V.D., Themeli, M., and Sadelain, M. (2013) PD-1- and CTLA-4-based
inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy
responses. Sci. Transl. Med., 5 (215), 215ra172.
70 Kloss, C.C., Condomines, M., Cartellieri, M. et al. (2013) Combinatorial antigen
recognition with balanced signaling promotes selective tumor eradication by
engineered T cells. Nat. Biotechnol., 31 (1), 71–75.
71 Wu, C.-Y., Roybal, K.T., Puchner, E.M. et al. (2015) Remote control of
therapeutic T cells through a small molecule-gated chimeric receptor.
Science, 350 (6258), aab4077.
72 Morsut, L., Roybal, K.T., Xiong, X. et al. (2016) Engineering customized cell
sensing and response behaviors using synthetic notch receptors. Cell, 164 (4),
780–791.
73 Roybal, K.T., Rupp, L.J., Morsut, L. et al. (2016) Precision tumor recognition by
T cells with combinatorial antigen-sensing circuits. Cell, 164 (4), 770–779.
74 Long, A.H., Haso, W.M., Shern, J.F. et al. (2015) 4-1BB costimulation
ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen
receptors. Nat. Med., 21 (6), 581–590.
75 Watanabe, N., Bajgain, P., Sukumaran, S. et al. (2016) Fine-tuning the CAR
spacer improves T-cell potency. Oncoimmunology, 5 (12), e1253656.
76 Pegram, H.J., Park, J.H., and Brentjens, R.J. (2014) CD28z CARs and armored
CARs. Cancer J., 20 (2), 127–133.
77 Chmielewski, M. and Abken, H. (2015) TRUCKs: the fourth generation of
CARs. Expert Opin. Biol. Ther., 15 (8), 1145–1154.
78 Yeku, O.O. and Brentjens, R.J. (2016) Armored CAR T-cells: utilizing cytokines
and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy.
Biochem. Soc. Trans., 44 (2), 412–418.
79 Perna, S.K., Pagliara, D., Mahendravada, A. et al. (2014) Interleukin-7 mediates
selective expansion of tumor-redirected cytotoxic T lymphocytes (CTLs)
without enhancement of regulatory T-cell inhibition. Clin. Cancer Res., 20 (1),
131–139.
80 Di Stasi, A., De Angelis, B., Rooney, C.M. et al. (2009) T lymphocytes
coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have