Noncommutative Mathematics for Quantum Systems

(Dana P.) #1

74 Noncommutative Mathematics for Quantum Systems


Definition 1.7.30 Let XandY be two normal operators on a
Hilbert spaceH, not necessarily bounded. We say thatXandYare
boolean-independent, if the∗-algebras alg 0 (X) ={h(X):h∈Cb
(C),h( 0 ) = 0 }and alg 0 (Y) = {h(Y):h∈Cb(C),h( 0 ) = 0 }are
boolean-independent.


We will start by characterizing up to unitary transformations
the general form of two boolean-independent normal operators.
Given a measure space(M,M,μ), we shall denote byL^2 (M,μ) 0
the orthogonal complement of the constant function, that is,


L^2 (M,μ) 0 =

{
ψ∈L^2 (M,μ);


M

ψdμ= 0

}
.

Proposition 1.7.31 Letμ,νbe two probability measures onCand
define normal operators Nx and Ny on Hμ,ν = C⊕L^2 (C,μ) 0 ⊕
L^2 (C,ν) 0 by


DomNx =







α
ψ 1
ψ 2


∈Hμ,ν;


C


∣x

(
ψ 1 (x) +α

)∣
∣^2 dμ(x)<∞




,

DomNy =







α
ψ 1
ψ 2


∈Hμ,ν;


C

∣∣
y

(
ψ 2 (y) +α

)∣∣ 2
dν(y)<∞




,

Nx



α
ψ 1
ψ 2


 =





Cx

(
ψ 1 (x) +α

)
dμ(x)
x(ψ 1 +α)−


Cx

(
ψ 1 (x) +α

)
dμ(x)
0



,

Ny



α
ψ 1
ψ 2


 =





Cy

(
ψ 2 (y) +α

)
dν(y)
0
y(ψ 2 +α)−


Cy

(
ψ 2 (y) +α

)
dν(y)



.

Then Nxand Nyare boolean-independent w.r.t. the vectorω=




1
0
0



and we haveL(Nx,ω) =μ,L(Ny,ω) =ν.

Free download pdf