Noncommutative Mathematics for Quantum Systems

(Dana P.) #1
Independence and L ́evy Processes in Quantum Probability 75

Proof Under the identification C⊕L^2 (C,μ) 0 ⊕L^2 (C,ν) 0 ∼=
L^2 (C,μ)⊕L^2 (C,ν) 0 , where




α
ψ 1
ψ 2


∼=

(
ψ 1 +α
ψ 2

)
,

the operator Nx becomes multiplication by the variable x on
L^2 (C,μ). It is clearly normal and we have


h(Nx)



α
ψ 1
ψ 2


=





Ch(x)

(
α+ψ 1 (x)

)
dμ(x)
h(α+ψ 1 )−


Ch(x)

(
α+ψ 1 (x)

)
dμ(x)
h( 0 )ψ 2




and〈ω,h(Nx)ω〉=



Chdμfor allh∈Cb(C), that is,L(Nx,ω) =μ.
Similarly,


h(Ny)



α
ψ 1
ψ 2


=





Ch(y)

(
α+ψ 2 (y)

)
dν(y)
h( 0 )ψ 1
h(α+ψ 2 )−


Ch(y)

(
α+ψ 2 (y)

)
dν(y)




for allh∈Cb(C), andL(Ny,ω) =ν.
Letf 1 ,... ,fn,g 1 ,... ,gn∈ Cb(C), withf 1 ( 0 ) =··· = fn( 0 ) =
g 1 ( 0 ) =···=gn( 0 ) =0. Thenfn(Nx)gn− 1 (Ny)···g 1 (Ny)f 1 (Nx)ω


=




∏nk= 1


Cfkdμ∏

n− 1
`= 1


Cg`dν
∏nk=−^11


Cfkdμ∏

n− 1
`= 1


Cg`dν

(
fn−


Cfndμ

)

0




and therefore


〈ω,fn(Nx)gn− 1 (Ny)···g 1 (Ny)f 1 (Nx)ω〉

=

n

k= 1


C

fkdμ

n− 1

`= 1


C

g`dν

=

n

k= 1

〈ω,fk(Nx)ω〉

n− 1

`= 1

〈ω,g`(Ny)ω〉

that is, the condition for boolean independence is satisfied in this
case. Similarly, one checks the expectation ofgn(Ny)fn(Nx)···

Free download pdf