Noncommutative Mathematics for Quantum Systems

(Dana P.) #1
Independence and L ́evy Processes in Quantum Probability 77

This is an isometry, since



W



α 1
f 1
g 1


,W



α 2
f 2
g 2




=

〈(
α 1 +f 1 (X) +g 1 (Y)

)
Ω,

(
α 2 +f 2 (X) +g 2 (Y)

)


=α 1 α 2 +


C

f 1 (x)f 2 (x)dμ(x) +


C

g 1 (y)g 2 (y)dμ(y),

where the mixed terms all vanish because 〈Ω,fi(X)Ω〉 =
〈Ω,gi(Y)Ω〉=0 fori=1, 2. Therefore,Wextends in a unique way
to an isometry onC⊕L^2 (C,μ) 0 ⊕L^2 (C,ν) 0
Let nowh∈Cb(C), then we get



W



α 1
f 1
g 1


,h(X)W



α 2
f 2
g 2




=

〈(
α 1 +f 1 (X) +g 1 (Y)

)
Ω,(h(X)−h( 0 ) 1

)(
α 2 +f 2 (X) +g 2 (Y)

)


+h( 0 )


W



α 1
f 1
g 1


,W



α 2
f 2
g 2




=

〈(
α 1 +f 1 (X)

)
Ω,

(
h(X)−h( 0 ) 1

)(
α 2 +f 2 (X)

)


+h( 0 )

〈

α 1
f 1
g 1


,



α 2
f 2
g 2




,

because the boolean independence and〈Ω,gi(Y)Ω〉=0 imply that
all other terms vanish. But since〈Ω,fi(Y)Ω〉=0, this is equal to


〈(
α 1 +f 1 (X)

)
Ω,h(X)

(
α 2 +f 2 (X)

)


+h( 0 )



〈

α 1
f 1
g 1


,



α 2
f 2
g 2




−α 1 α 2 −〈f 1 ,f 2 〉



=

〈

α 1
f 1
g 1


,





h(x)

(
f 2 (x) +α 2

)
dμ(x)
h(f 2 +α 2 )−


h(x)

(
f 2 (x) +α 2

)
dμ(x)
h( 0 )g 2





.
Free download pdf