Noncommutative Mathematics for Quantum Systems

(Dana P.) #1

76 Noncommutative Mathematics for Quantum Systems


g 1 (Ny)f 1 (Nx), fn(Nx)gn(Ny)···f 1 (Nx)g 1 (Ny), and gn(Ny)fn− 1
(Nx)···f 1 (Nx)g 1 (Ny).


We shall now show that any pair of boolean-independent normal
operators can be reduced to this model.


Theorem 1.7.32 Let X and Y be two normal operators on a Hilbert
space H that are boolean-independent w.r.t. toΩ∈H and letμ=L(X,
Ω),ν=L(Y,Ω).
Then there exists an isometry W:C⊕L^2 (C,μ) 0 ⊕L^2 (C,ν) 0 → H
such that


(1.7.9)

W∗h(X)W



α
ψ 1
ψ 2


=





Ch(x)

(
α+ψ 1 (x)

)
dμ(x)
h(α+ψ 1 )−


Ch(x)

(
α+ψ 1 (x)

)
dμ(x)
h( 0 )ψ 2



,

W∗h(Y)W



α
ψ 1
ψ 2


=





Ch(y)

(
α+ψ 2 (y)

)
dν(y)
h( 0 )ψ 1
h(α+ψ 2 )−


Ch(y)

(
α+ψ 2 (y)

)
dν(y)




for all h∈Cb(C),α∈C,ψ 1 ∈L^2 (C,μ) 0 ,ψ 2 ∈L^2 (C,ν) 0.
We have


W

(
C⊕L^2 (C,μ) 0 ⊕L^2 (C,ν) 0

)
=alg{h(X),h(Y):h∈Cb(C)}Ω.

IfΩ∈H is cyclic for the algebra


alg(X,Y) =alg{h(X),h(Y):h∈Cb(C)}

generated by X and Y, then W is unitary.


Proof For a probability measureμonC, let


Cb(C)μ,0=

{
f∈Cb(C);


C

f(z)dμ(x) = 0

}
,

thenCb(C)μ,0is dense inL^2 (C,μ) 0.
DefineW:C⊕Cb(C)μ,0⊕Cb(C)ν,0→Hby


W



α
f
g


=

(
α+f(X) +g(Y)

)
Ω.
Free download pdf