76 Noncommutative Mathematics for Quantum Systems
g 1 (Ny)f 1 (Nx), fn(Nx)gn(Ny)···f 1 (Nx)g 1 (Ny), and gn(Ny)fn− 1
(Nx)···f 1 (Nx)g 1 (Ny).
We shall now show that any pair of boolean-independent normal
operators can be reduced to this model.
Theorem 1.7.32 Let X and Y be two normal operators on a Hilbert
space H that are boolean-independent w.r.t. toΩ∈H and letμ=L(X,
Ω),ν=L(Y,Ω).
Then there exists an isometry W:C⊕L^2 (C,μ) 0 ⊕L^2 (C,ν) 0 → H
such that
(1.7.9)W∗h(X)Wα
ψ 1
ψ 2=
∫
Ch(x)(
α+ψ 1 (x))
dμ(x)
h(α+ψ 1 )−∫
Ch(x)(
α+ψ 1 (x))
dμ(x)
h( 0 )ψ 2
,W∗h(Y)Wα
ψ 1
ψ 2=
∫
Ch(y)(
α+ψ 2 (y))
dν(y)
h( 0 )ψ 1
h(α+ψ 2 )−∫
Ch(y)(
α+ψ 2 (y))
dν(y)
for all h∈Cb(C),α∈C,ψ 1 ∈L^2 (C,μ) 0 ,ψ 2 ∈L^2 (C,ν) 0.
We have
W(
C⊕L^2 (C,μ) 0 ⊕L^2 (C,ν) 0)
=alg{h(X),h(Y):h∈Cb(C)}Ω.IfΩ∈H is cyclic for the algebra
alg(X,Y) =alg{h(X),h(Y):h∈Cb(C)}generated by X and Y, then W is unitary.
Proof For a probability measureμonC, let
Cb(C)μ,0={
f∈Cb(C);∫Cf(z)dμ(x) = 0}
,thenCb(C)μ,0is dense inL^2 (C,μ) 0.
DefineW:C⊕Cb(C)μ,0⊕Cb(C)ν,0→Hby
Wα
f
g=(
α+f(X) +g(Y))
Ω.