Independence and L ́evy Processes in Quantum Probability 79Proposition 1.7.35 Letμandνbe two probabilities onRand define
operators Nxand Nyas in Proposition 1.7.31. Then Nxand Nyare self-
adjoint and boolean-independent w.r.t.ω =
1
0
0. Furthermore, theoperator z−Nx−Nyhas a bounded inverse for all z∈C\R, given by
(z−Nx−Ny)−^1α
ψ 1
ψ 2=
β
ψ 1 +βx−cx
z−x
ψ 2 +βy−cy
z−y
, (1.7.10)where
β=αGμ(z)Gν(z) +Gν(z)∫
Rψ 1 (x)
z−xdμ(x) +Gμ(z)∫
Rψ 2 (y)
z−ydν(y)
Gμ(z) +Gν(z)−zGμ(z)Gν(z),(1.7.11)and cx,cy∈Chave to be chosen such that
∫Rψ 1 (x) +βx−cx
z−xdμ(x) = 0 =∫Rψ 2 (y) +βy−cy
z−ydν(y).(1.7.12)Note that Equation (1.7.12) yields the following formulae for the
constantscx,cy,
cx =∫ ψ 1 (x)
z−xdμ(x) +β(
zGμ(z)− 1)Gμ(z),cy =∫ ψ 2 (y)
z−ydν(y) +β(
zGν(z)− 1)Gν(z).Proof NxandNyare boolean-independent by Proposition 1.7.31.
Forz∈C+, we have ImFμ(z)≥Imz>0, ImFν(z)≥Imz>0,
and therefore
ImGμ(z) +Gν(z)−zGμ(z)Gν(z)
Gμ(z)Gν(z)=Im(
Fμ(z) +Fν(z)−z)
>0.This shows that the denominator of the right-hand side of Equation
(1.7.11) cannot vanish forz∈C+. SinceGμ(z) =Gμ(z),Gν(z) =