Noncommutative Mathematics for Quantum Systems

(Dana P.) #1

80 Noncommutative Mathematics for Quantum Systems


Gν(z), it can not vanish forzwith Imz<0 either. The functionsz−^1 x
andz−xxare bounded onRforz∈C\R, therefore, Equation (1.7.10)
defines a bounded operator.
Let


φ 1 =

ψ 1 +βx−cx
z−x

and φ 2 =

ψ 2 +βy−cy
z−y

,

then


(z−Nx−Ny)



β
φ 1
φ 2


 =




zβ+dx+dy
(z−x)φ 1 −βx−dx
(z−y)φ 2 −βy−dy




=




zβ+dx+dy
ψ 1 −cx−dx
ψ 2 −cy−dy




where


dx=


x

(
φ 1 (x) +β

)
dμ(x), dy=


y

(
φ 2 (y) +β

)
dν(y).

Sinceψ 1 ∈L^2 (R,μ) 0 ,ψ 2 ∈L^2 (R,ν) 0 , integrating over the second
and third component in the formula above givescx = −dxand
cy=−dy. Therefore,


(z−Nx−Ny)



β
φ 1
φ 2


=




zβ−cx−cy
ψ 1
ψ 2




We have to show that the first component is equal toα. We get


zβ−cx−cy=zβ−

∫ ψ 1 (x)
z−xdμ(x) +β

(
zGμ(z)− 1

)

Gμ(z)


∫ ψ 1 (x)
z−xdμ(x) +β

(
zGν(z)− 1

)

Gν(z)


Gμ(z) +Gν(z)−zGμ(z)Gν(z)
Gμ(z)Gν(z)


1
Gμ(z)

∫ ψ
1 (x)
z−x

dμ(x)


1
Gν(z)

∫ ψ
2 (y)
z−y

dν(y)
Free download pdf