80 Noncommutative Mathematics for Quantum Systems
Gν(z), it can not vanish forzwith Imz<0 either. The functionsz−^1 x
andz−xxare bounded onRforz∈C\R, therefore, Equation (1.7.10)
defines a bounded operator.
Let
φ 1 =ψ 1 +βx−cx
z−xand φ 2 =ψ 2 +βy−cy
z−y,then
(z−Nx−Ny)β
φ 1
φ 2 =
zβ+dx+dy
(z−x)φ 1 −βx−dx
(z−y)φ 2 −βy−dy
=
zβ+dx+dy
ψ 1 −cx−dx
ψ 2 −cy−dy
where
dx=∫
x(
φ 1 (x) +β)
dμ(x), dy=∫
y(
φ 2 (y) +β)
dν(y).Sinceψ 1 ∈L^2 (R,μ) 0 ,ψ 2 ∈L^2 (R,ν) 0 , integrating over the second
and third component in the formula above givescx = −dxand
cy=−dy. Therefore,
(z−Nx−Ny)β
φ 1
φ 2=
zβ−cx−cy
ψ 1
ψ 2
We have to show that the first component is equal toα. We get
zβ−cx−cy=zβ−∫ ψ 1 (x)
z−xdμ(x) +β(
zGμ(z)− 1)Gμ(z)−∫ ψ 1 (x)
z−xdμ(x) +β(
zGν(z)− 1)Gν(z)=βGμ(z) +Gν(z)−zGμ(z)Gν(z)
Gμ(z)Gν(z)−1
Gμ(z)∫ ψ
1 (x)
z−xdμ(x)−1
Gν(z)∫ ψ
2 (y)
z−ydν(y)