Noncommutative Mathematics for Quantum Systems

(Dana P.) #1
Independence and L ́evy Processes in Quantum Probability 79

Proposition 1.7.35 Letμandνbe two probabilities onRand define
operators Nxand Nyas in Proposition 1.7.31. Then Nxand Nyare self-


adjoint and boolean-independent w.r.t.ω =




1
0
0


. Furthermore, the

operator z−Nx−Nyhas a bounded inverse for all z∈C\R, given by


(z−Nx−Ny)−^1



α
ψ 1
ψ 2


=




β
ψ 1 +βx−cx
z−x
ψ 2 +βy−cy
z−y



, (1.7.10)

where


β=

αGμ(z)Gν(z) +Gν(z)


R

ψ 1 (x)
z−xdμ(x) +Gμ(z)


R

ψ 2 (y)
z−ydν(y)
Gμ(z) +Gν(z)−zGμ(z)Gν(z)

,

(1.7.11)

and cx,cy∈Chave to be chosen such that



R

ψ 1 (x) +βx−cx
z−x

dμ(x) = 0 =


R

ψ 2 (y) +βy−cy
z−y

dν(y).

(1.7.12)

Note that Equation (1.7.12) yields the following formulae for the
constantscx,cy,


cx =

∫ ψ 1 (x)
z−xdμ(x) +β

(
zGμ(z)− 1

)

Gμ(z)

,

cy =

∫ ψ 2 (y)
z−ydν(y) +β

(
zGν(z)− 1

)

Gν(z)

.

Proof NxandNyare boolean-independent by Proposition 1.7.31.
Forz∈C+, we have ImFμ(z)≥Imz>0, ImFν(z)≥Imz>0,
and therefore


Im

Gμ(z) +Gν(z)−zGμ(z)Gν(z)
Gμ(z)Gν(z)

=Im

(
Fμ(z) +Fν(z)−z

)
>0.

This shows that the denominator of the right-hand side of Equation


(1.7.11) cannot vanish forz∈C+. SinceGμ(z) =Gμ(z),Gν(z) =

Free download pdf