Microfluidics for Biologists Fundamentals and Applications

(National Geographic (Little) Kids) #1

  1. Wang J-H, Cheng L, Wang C-H, Ling W-S, Wang S-W, Lee G-B (2013) An integrated chip
    capable of performing sample pretreatment and nucleic acid amplification for HIV-1 detection.
    Biosens Bioelectron 41:484–491. doi:10.1016/j.bios.2012.09.011

  2. Jung H-C, Moon J-H, Baek D-H, Lee J-H, Choi Y-Y, Hong J-S et al (2012) CNT/PDMS
    composite flexible dry electrodes for long-term ECG monitoring. IEEE Trans Biomed Eng
    59:1472–1479. doi:10.1109/TBME.2012.2190288

  3. Tsao C-W, DeVoe DL (2008) Bonding of thermoplastic polymer microfluidics. Microfluid
    Nanofluidics 6:1–16. doi:10.1007/s10404-008-0361-x

  4. Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL (2007) Low temperature bonding of
    PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip
    7:499–505. doi:10.1039/b618901f

  5. Yang W, Sun X, Wang H-Y, Woolley AT (2009) Integrated microfluidic device for serum
    biomarker quantitation using either standard addition or a calibration curve. Anal Chem
    81:8230–8235. doi:10.1021/ac901566s

  6. Chen D, Mauk M, Qiu X, Liu C, Kim J, Ramprasad S et al (2010) An integrated, self-contained
    microfluidic cassette for isolation, amplification, and detection of nucleic acids. Biomed
    Microdevices 12:705–719. doi:10.1007/s10544-010-9423-4

  7. Yu H, Chong ZZ, Tor SB, Liu E, Loh NH (2015) Low temperature and deformation-free
    bonding of PMMA microfluidic devices with stable hydrophilicity via oxygen plasma treat-
    ment and PVA coating. RSC Adv 5:8377–8388. doi:10.1039/C4RA12771D

  8. Bartolo D, Degre ́G, Nghe P, Studer V (2008) Microfluidic stickers. Lab Chip 8:274–279.
    doi:10.1039/b712368j

  9. Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in
    controlled release. Adv Drug Deliv Rev 11:1–35. doi:10.1016/0169-409X(93)90025-Y

  10. Fotin AV, Drobyshev AL, Proudnikov DY, Perov AN, Mirzabekov AD (1998) Parallel
    thermodynamic analysis of duplexes on oligodeoxyribonucleotide microchips. Nucleic
    Acids Res 26:1515–1521. http://www.pubmedcentral.nih.gov/articlerender.fcgi?
    artid¼147416&tool¼pmcentrez&rendertype¼abstract. Accessed 23 Mar 2016

  11. Pevzner PA, Lysov YP, Khrapko KR, Belyavsky AV, Florentiev VL, Mirzabekov AD (1991)
    Improved chips for sequencing by hybridization. J Biomol Struct Dyn 9:399–410. doi:10.1080/
    07391102.1991.10507920

  12. Heo J, Crooks RM (2005) Microfluidic biosensor based on an array of hydrogel-entrapped
    enzymes. Anal Chem 77:6843–6851. doi:10.1021/ac0507993

  13. Cheng C-J, Chu L-Y, Zhang J, Wang H-D, Wei G (2008) Effect of freeze-drying and
    rehydrating treatment on the thermo-responsive characteristics of poly
    (N-isopropylacrylamide) microspheres. Colloid Polym Sci 286:571–577. doi:10.1007/
    s00396-007-1817-3

  14. Beebe D, Moore J, Bauer J, Yu Q, Liu R, Devadoss C et al (2000) Functional hydrogel
    structures for autonomous flow control inside microfluidic channels. Nature 404:588–590.
    doi:10.1038/35007047

  15. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for
    inexpensive, low-volume, portable bioassays. Angew Chem Int Ed Engl 46:1318–1320.
    doi:10.1002/anie.200603817

  16. Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status
    and future trends. Biomicrofluidics 6:11301–1130113. doi:10.1063/1.3687398

  17. Delaney JL, Hogan CF, Tian J, Shen W (2011) Electrogenerated chemiluminescence detection
    in paper-based microfluidic sensors. Anal Chem 83:1300–1306. doi:10.1021/ac102392t

  18. Chitnis G, Ding Z, Chang C-L, Savran CA, Ziaie B (2011) Laser-treated hydrophobic paper:
    an inexpensive microfluidic platform. Lab Chip 11:1161–1165. doi:10.1039/c0lc00512f


164 P. Manickam et al.


http://www.ebook3000.com

Free download pdf