Microfluidics for Biologists Fundamentals and Applications

(National Geographic (Little) Kids) #1

  1. Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A (1993) Micromachining a
    miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science
    261:895–897. doi:10.1126/science.261.5123.895

  2. Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Lüdi H et al (1992) Planar chips
    technology for miniaturization and integration of separation techniques into monitoring
    systems. J Chromatogr A 593:253–258. doi:10.1016/0021-9673(92)80293-4

  3. Tjerkstra RW, De Boer M, Berenschot E, Gardeniers JGE, van den Berg A, Elwenspoek M
    (1997) Etching technology for microchannels. In: Proceedings IEEE The Tenth Annual
    International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro
    Structures, Sensors, Actuators, Machines and Robots. pp 147–152. doi:10.1109/MEMSYS.
    1997.581790

  4. Wu Z, Chen H, Liu X, Zhang Y, Li D, Huang H (2009) Protein adsorption on poly(N-vinylpyr-
    rolidone)-modified silicon surfaces prepared by surface-initiated atom transfer radical poly-
    merization. Langmuir 25:2900–2906. doi:10.1021/la8037523

  5. Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions,
    integration, and applications. Chem Rev 113:2550–2583. doi:10.1021/cr300337x

  6. Anderson RR, Hu W, Noh JW, Dahlquist WC, Ness SJ, Gustafson TM et al (2011) Transient
    deflection response in microcantilever array integrated with polydimethylsiloxane (PDMS)
    microfluidics. Lab Chip 11:2088–2096. doi:10.1039/c1lc20025a

  7. Washburn AL, Gunn LC, Bailey RC (2009) Label-free quantitation of a cancer biomarker in
    complex media using silicon photonic microring resonators. Anal Chem 81:9499–9506.
    doi:10.1021/ac902006p

  8. Harz S, Schimmelpfennig M, Tse Sum Bui B, Marchyk N, Haupt K, Feller K-H (2011)
    Fluorescence optical spectrally resolved sensor based on molecularly imprinted polymers
    and microfluidics. Eng Life Sci 11:559–565. doi:10.1002/elsc.201000222

  9. Grover WH, Ivester RHC, Jensen EC, Mathies RA (2006) Development and multiplexed
    control of latching pneumatic valves using microfluidic logical structures. Lab Chip
    6:623–631. doi:10.1039/b518362f

  10. Ibanez-Garcia N, Mercader MB, Mendes da Rocha Z, Seabra CA, Go ́ngora-Rubio MR,
    Chamarro JA (2006) Continuous flow analytical microsystems based on low-temperature
    co-fired ceramic technology. Integrated potentiometric detection based on solvent polymeric
    ion-selective electrodes. Anal Chem 78:2985–2992. doi:10.1021/ac051994k

  11. Zhang W, Eitel RE (2012) Biostability of low-temperature co-fired ceramic materials for
    microfluidic and biomedical devices. Int J Appl Ceram Technol 9:60–66. doi:10.1111/j.1744-
    7402.2010.02581.x

  12. Fakunle ES, Fritsch I (2010) Low-temperature co-fired ceramic microchannels with individ-
    ually addressable screen-printed gold electrodes on four walls for self-contained electrochem-
    ical immunoassays. Anal Bioanal Chem 398:2605–2615. doi:10.1007/s00216-010-4098-5

  13. Wolfe DB, Qin D, Whitesides GM (2010) Rapid prototyping of microstructures by soft
    lithography for biotechnology. Methods Mol Biol 583:81–107. doi:10.1007/978-1-60327-
    106-6_3

  14. Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning.
    Nat Protoc 5:491–502. doi:10.1038/nprot.2009.234

  15. Zhu Q, Trau D (2012) Multiplex detection platform for tumor markers and glucose in serum
    based on a microfluidic microparticle array. Anal Chim Acta 751:146–154. doi:10.1016/j.aca.
    2012.09.007

  16. Zio ́łkowska K, Stelmachowska A, Kwapiszewski R, Chudy M, Dybko A, Brzo ́zka Z (2013)
    Long-term three-dimensional cell culture and anticancer drug activity evaluation in a
    microfluidic chip. Biosens Bioelectron 40:68–74. doi:10.1016/j.bios.2012.06.017

  17. Wang C-H, Lien K-Y, Hung L-Y, Lei H-Y, Lee G-B (2012) Integrated microfluidic system for
    the identification and multiple subtyping of influenza viruses by using a molecular diagnostic
    approach. Microfluid Nanofluid 13:113–123. doi:10.1007/s10404-012-0947-1


6 Materials and Surfaces in Microfluidic Biosensors 163

Free download pdf