- Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A (1993) Micromachining a
miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science
261:895–897. doi:10.1126/science.261.5123.895 - Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Lüdi H et al (1992) Planar chips
technology for miniaturization and integration of separation techniques into monitoring
systems. J Chromatogr A 593:253–258. doi:10.1016/0021-9673(92)80293-4 - Tjerkstra RW, De Boer M, Berenschot E, Gardeniers JGE, van den Berg A, Elwenspoek M
(1997) Etching technology for microchannels. In: Proceedings IEEE The Tenth Annual
International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro
Structures, Sensors, Actuators, Machines and Robots. pp 147–152. doi:10.1109/MEMSYS.
1997.581790 - Wu Z, Chen H, Liu X, Zhang Y, Li D, Huang H (2009) Protein adsorption on poly(N-vinylpyr-
rolidone)-modified silicon surfaces prepared by surface-initiated atom transfer radical poly-
merization. Langmuir 25:2900–2906. doi:10.1021/la8037523 - Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions,
integration, and applications. Chem Rev 113:2550–2583. doi:10.1021/cr300337x - Anderson RR, Hu W, Noh JW, Dahlquist WC, Ness SJ, Gustafson TM et al (2011) Transient
deflection response in microcantilever array integrated with polydimethylsiloxane (PDMS)
microfluidics. Lab Chip 11:2088–2096. doi:10.1039/c1lc20025a - Washburn AL, Gunn LC, Bailey RC (2009) Label-free quantitation of a cancer biomarker in
complex media using silicon photonic microring resonators. Anal Chem 81:9499–9506.
doi:10.1021/ac902006p - Harz S, Schimmelpfennig M, Tse Sum Bui B, Marchyk N, Haupt K, Feller K-H (2011)
Fluorescence optical spectrally resolved sensor based on molecularly imprinted polymers
and microfluidics. Eng Life Sci 11:559–565. doi:10.1002/elsc.201000222 - Grover WH, Ivester RHC, Jensen EC, Mathies RA (2006) Development and multiplexed
control of latching pneumatic valves using microfluidic logical structures. Lab Chip
6:623–631. doi:10.1039/b518362f - Ibanez-Garcia N, Mercader MB, Mendes da Rocha Z, Seabra CA, Go ́ngora-Rubio MR,
Chamarro JA (2006) Continuous flow analytical microsystems based on low-temperature
co-fired ceramic technology. Integrated potentiometric detection based on solvent polymeric
ion-selective electrodes. Anal Chem 78:2985–2992. doi:10.1021/ac051994k - Zhang W, Eitel RE (2012) Biostability of low-temperature co-fired ceramic materials for
microfluidic and biomedical devices. Int J Appl Ceram Technol 9:60–66. doi:10.1111/j.1744-
7402.2010.02581.x - Fakunle ES, Fritsch I (2010) Low-temperature co-fired ceramic microchannels with individ-
ually addressable screen-printed gold electrodes on four walls for self-contained electrochem-
ical immunoassays. Anal Bioanal Chem 398:2605–2615. doi:10.1007/s00216-010-4098-5 - Wolfe DB, Qin D, Whitesides GM (2010) Rapid prototyping of microstructures by soft
lithography for biotechnology. Methods Mol Biol 583:81–107. doi:10.1007/978-1-60327-
106-6_3 - Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning.
Nat Protoc 5:491–502. doi:10.1038/nprot.2009.234 - Zhu Q, Trau D (2012) Multiplex detection platform for tumor markers and glucose in serum
based on a microfluidic microparticle array. Anal Chim Acta 751:146–154. doi:10.1016/j.aca.
2012.09.007 - Zio ́łkowska K, Stelmachowska A, Kwapiszewski R, Chudy M, Dybko A, Brzo ́zka Z (2013)
Long-term three-dimensional cell culture and anticancer drug activity evaluation in a
microfluidic chip. Biosens Bioelectron 40:68–74. doi:10.1016/j.bios.2012.06.017 - Wang C-H, Lien K-Y, Hung L-Y, Lei H-Y, Lee G-B (2012) Integrated microfluidic system for
the identification and multiple subtyping of influenza viruses by using a molecular diagnostic
approach. Microfluid Nanofluid 13:113–123. doi:10.1007/s10404-012-0947-1
6 Materials and Surfaces in Microfluidic Biosensors 163