Computational Systems Biology Methods and Protocols.7z

(nextflipdebug5) #1
and similarity measures. BMC Genomics 12
(Suppl 5):S1. https://doi.org/10.1186/
1471-2164-12-S5-S1


  1. Wang Z, Wen X, Lu Y, Yao Y, Zhao H (2016)
    Exploiting machine learning for predicting
    skeletal-related events in cancer patients with
    bone metastases. Oncotarget 7
    (11):12612–12622. https://doi.org/10.
    18632/oncotarget.7278

  2. Way GP, Allaway RJ, Bouley SJ, Fadul CE,
    Sanchez Y, Greene CS (2017) A machine
    learning classifier trained on cancer transcrip-
    tomes detects NF1 inactivation signal in glio-
    blastoma. BMC Genomics 18(1):127.
    https://doi.org/10.1186/s12864-017-
    3519-7

  3. Mani S, Chen Y, Li X, Arlinghaus L, Chakra-
    varthy AB, Abramson V, Bhave SR, Levy MA,
    Xu H, Yankeelov TE (2013) Machine learning
    for predicting the response of breast cancer to
    neoadjuvant chemotherapy. J Am Med
    Inform Assoc 20(4):688–695.https://doi.
    org/10.1136/amiajnl-2012-001332

  4. De Bari B, Vallati M, Gatta R, Lestrade L,
    Manfrida S, Carrie C, Valentini V (2016)
    Development and validation of a machine
    learning-based predictive model to improve
    the prediction of inguinal status of anal cancer
    patients: a preliminary report. Oncotarget.
    https://doi.org/10.18632/oncotarget.
    10749

  5. Lee BJ, Shin MS, YJ O, Oh HS, Ryu KH
    (2009) Identification of protein functions
    using a machine-learning approach based on
    sequence-derived properties. Proteome Sci
    7:27.https://doi.org/10.1186/1477-5956-
    7-27

  6. Mordelet F, Vert JP (2011) ProDiGe: Priori-
    tization Of Disease Genes with multitask
    machine learning from positive and unlabeled
    examples. BMC Bioinformatics 12:389.
    https://doi.org/10.1186/1471-2105-12-
    389

  7. Torii M, Wagholikar K, Liu H (2011) Using
    machine learning for concept extraction on
    clinical documents from multiple data
    sources. J Am Med Inform Assoc 18
    (5):580–587. https://doi.org/10.1136/
    amiajnl-2011-000155

  8. Jiang M, Chen Y, Liu M, Rosenbloom ST,
    Mani S, Denny JC, Xu H (2011) A study of
    machine-learning-based approaches to extract
    clinical entities and their assertions from dis-
    charge summaries. J Am Med Inform Assoc
    18(5):601–606. https://doi.org/10.1136/
    amiajnl-2011-000163
    78. Ware H, Mullett CJ, Jagannathan V, El-Rawas
    O (2012) Machine learning-based corefer-
    ence resolution of concepts in clinical docu-
    ments. J Am Med Inform Assoc 19
    (5):883–887. https://doi.org/10.1136/
    amiajnl-2011-000774
    79. Wu Y, Levy MA, Micheel CM, Yeh P, Tang B,
    Cantrell MJ, Cooreman SM, Xu H (2012)
    Identifying the status of genetic lesions in
    cancer clinical trial documents using machine
    learning. BMC Genomics 13(Suppl 8):S21.
    https://doi.org/10.1186/1471-2164-13-
    S8-S21
    80. Bravo A, Li TS, Su AI, Good BM, Furlong LI
    (2016) Combining machine learning, crowd-
    sourcing and expert knowledge to detect
    chemical-induced diseases in text. Database.
    https://doi.org/10.1093/database/baw094
    81. Yip KY, Cheng C, Gerstein M (2013)
    Machine learning and genome annotation: a
    match meant to be? Genome Biol 14(5):205.
    https://doi.org/10.1186/gb-2013-14-5-
    205
    82. Xu X, Hoang S, Mayo MW, Bekiranov S
    (2010) Application of machine learning
    methods to histone methylation ChIP-Seq
    data reveals H4R3me2 globally represses
    gene expression. BMC Bioinformatics
    11:396. https://doi.org/10.1186/1471-
    2105-11-396
    83. De Santis M, Rinaldi F, Falcone E, Lucidi S,
    Piaggio G, Gurtner A, Farina L (2014) Com-
    bining optimization and machine learning
    techniques for genome-wide prediction of
    human cell cycle-regulated genes. Bioinfor-
    matics 30(2):228–233.https://doi.org/10.
    1093/bioinformatics/btt671
    84. Kangas LJ, Metz TO, Isaac G, Schrom BT,
    Ginovska-Pangovska B, Wang L, Tan L, Lewis
    RR, Miller JH (2012) In silico identification
    software (ISIS): a machine learning approach
    to tandem mass spectral identification of
    lipids. Bioinformatics 28(13):1705–1713.
    https://doi.org/10.1093/bioinformatics/
    bts194
    85. Acharjee A, Ament Z, West JA, Stanley E,
    Griffin JL (2016) Integration of metabolo-
    mics, lipidomics and clinical data using a
    machine learning method. BMC Bioinfor-
    matics 17(Suppl 15):440. https://doi.org/
    10.1186/s12859-016-1292-2
    86. Gorkin DU, Lee D, Reed X, Fletez-Brant C,
    Bessling SL, Loftus SK, Beer MA, Pavan WJ,
    McCallion AS (2012) Integration of ChIP-
    seq and machine learning reveals enhancers
    and a predictive regulatory sequence


202 Xiang-tian Yu et al.

Free download pdf