Computational Systems Biology Methods and Protocols.7z

(nextflipdebug5) #1

  1. Park Y, Kellis M (2015) Deep learning for
    regulatory genomics. Nat Biotechnol 33
    (8):825–826. https://doi.org/10.1038/
    nbt.3313

  2. Angermueller C, Parnamaa T, Parts L, Stegle
    O (2016) Deep learning for computational
    biology. Mol Syst Biol 12(7):878.https://
    doi.org/10.15252/msb.20156651

  3. Min S, Lee B, Yoon S (2016) Deep learning in
    bioinformatics. Brief Bioinform.https://doi.
    org/10.1093/bib/bbw068

  4. Miotto R, Wang F, Wang S, Jiang X, Dudley
    JT (2017) Deep learning for healthcare:
    review, opportunities and challenges. Brief
    Bioinform. https://doi.org/10.1093/bib/
    bbx044

  5. Uziela K, Menendez Hurtado D, Shu N,
    Wallner B, Elofsson A (2017) ProQ3D:
    improved model quality assessments using
    deep learning. Bioinformatics 33
    (10):1578–1580.https://doi.org/10.1093/
    bioinformatics/btw819

  6. Liu F, Ren C, Li H, Zhou P, Bo X, Shu W
    (2016) De novo identification of replication-
    timing domains in the human genome by
    deep learning. Bioinformatics 32
    (5):641–649.https://doi.org/10.1093/bio
    informatics/btv643

  7. Kelley DR, Snoek J, Rinn JL (2016) Basset:
    learning the regulatory code of the accessible
    genome with deep convolutional neural net-
    works. Genome Res 26(7):990–999.https://
    doi.org/10.1101/gr.200535.115

  8. Yang B, Liu F, Ren C, Ouyang Z, Xie Z, Bo X,
    Shu W (2017) BiRen: predicting enhancers
    with a deep-learning-based model using the
    DNA sequence alone. Bioinformatics.
    https://doi.org/10.1093/bioinformatics/
    btx105

  9. Zhang S, Zhou J, Hu H, Gong H, Chen L,
    Cheng C, Zeng J (2016) A deep learning
    framework for modeling structural features
    of RNA-binding protein targets. Nucleic
    Acids Res 44(4):e32. https://doi.org/10.
    1093/nar/gkv1025

  10. Quang D, Xie X (2016) DanQ: a hybrid con-
    volutional and recurrent deep neural network
    for quantifying the function of DNA
    sequences. Nucleic Acids Res 44(11):e107.
    https://doi.org/10.1093/nar/gkw226

  11. Wang S, Sun S, Li Z, Zhang R, Xu J (2017)
    Accurate de novo prediction of protein con-
    tact map by ultra-deep learning model. PLoS
    Comput Biol 13(1):e1005324.https://doi.
    org/10.1371/journal.pcbi.1005324

  12. Xiong D, Zeng J, Gong H (2017) A deep
    learning framework for improving long-


range residue-residue contact prediction
using a hierarchical strategy. Bioinformatics.
https://doi.org/10.1093/bioinformatics/
btx296


  1. Yuan Y, Shi Y, Li C, Kim J, Cai W, Han Z,
    Feng DD (2016) DeepGene: an advanced
    cancer type classifier based on deep learning
    and somatic point mutations. BMC Bioinfor-
    matics 17(Suppl 17):476.https://doi.org/
    10.1186/s12859-016-1334-9

  2. Kraus OZ, Ba JL, Frey BJ (2016) Classifying
    and segmenting microscopy images with deep
    multiple instance learning. Bioinformatics 32
    (12):i52–i59. https://doi.org/10.1093/bio
    informatics/btw252

  3. Kraus OZ, Grys BT, Ba J, Chong Y, Frey BJ,
    Boone C, Andrews BJ (2017) Automated
    analysis of high-content microscopy data
    with deep learning. Mol Syst Biol 13(4):924.
    https://doi.org/10.15252/msb.20177551

  4. Buggenthin F, Buettner F, Hoppe PS,
    Endele M, Kroiss M, Strasser M,
    Schwarzfischer M, Loeffler D, Kokkaliaris
    KD, Hilsenbeck O, Schroeder T, Theis FJ,
    Marr C (2017) Prospective identification of
    hematopoietic lineage choice by deep
    learning. Nat Methods 14(4):403–406.
    https://doi.org/10.1038/nmeth.4182

  5. Hazlett HC, Gu H, Munsell BC, Kim SH,
    Styner M, Wolff JJ, Elison JT, Swanson MR,
    Zhu H, Botteron KN, Collins DL, Constan-
    tino JN, Dager SR, Estes AM, Evans AC,
    Fonov VS, Gerig G, Kostopoulos P, McKins-
    try RC, Pandey J, Paterson S, Pruett JR,
    Schultz RT, Shaw DW, Zwaigenbaum L,
    Piven J, IBIS Network; Clinical Sites; Data
    Coordinating Center; Image Processing
    Core; Statistical Analysis (2017) Early brain
    development in infants at high risk for autism
    spectrum disorder. Nature 542
    (7641):348–351.https://doi.org/10.1038/
    nature21369

  6. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter
    SM, Blau HM, Thrun S (2017)
    Dermatologist-level classification of skin can-
    cer with deep neural networks. Nature 542
    (7639):115–118.https://doi.org/10.1038/
    nature21056

  7. Chen Y, Li Y, Narayan R, Subramanian A, Xie
    X (2016) Gene expression inference with
    deep learning. Bioinformatics 32
    (12):1832–1839.https://doi.org/10.1093/
    bioinformatics/btw074

  8. Chen JH, Asch SM (2017) Machine learning
    and prediction in medicine - beyond the peak
    of inflated expectations. N Engl J Med 376
    (26):2507–2509.https://doi.org/10.1056/
    NEJMp1702071


204 Xiang-tian Yu et al.

Free download pdf