- Park Y, Kellis M (2015) Deep learning for
regulatory genomics. Nat Biotechnol 33
(8):825–826. https://doi.org/10.1038/
nbt.3313 - Angermueller C, Parnamaa T, Parts L, Stegle
O (2016) Deep learning for computational
biology. Mol Syst Biol 12(7):878.https://
doi.org/10.15252/msb.20156651 - Min S, Lee B, Yoon S (2016) Deep learning in
bioinformatics. Brief Bioinform.https://doi.
org/10.1093/bib/bbw068 - Miotto R, Wang F, Wang S, Jiang X, Dudley
JT (2017) Deep learning for healthcare:
review, opportunities and challenges. Brief
Bioinform. https://doi.org/10.1093/bib/
bbx044 - Uziela K, Menendez Hurtado D, Shu N,
Wallner B, Elofsson A (2017) ProQ3D:
improved model quality assessments using
deep learning. Bioinformatics 33
(10):1578–1580.https://doi.org/10.1093/
bioinformatics/btw819 - Liu F, Ren C, Li H, Zhou P, Bo X, Shu W
(2016) De novo identification of replication-
timing domains in the human genome by
deep learning. Bioinformatics 32
(5):641–649.https://doi.org/10.1093/bio
informatics/btv643 - Kelley DR, Snoek J, Rinn JL (2016) Basset:
learning the regulatory code of the accessible
genome with deep convolutional neural net-
works. Genome Res 26(7):990–999.https://
doi.org/10.1101/gr.200535.115 - Yang B, Liu F, Ren C, Ouyang Z, Xie Z, Bo X,
Shu W (2017) BiRen: predicting enhancers
with a deep-learning-based model using the
DNA sequence alone. Bioinformatics.
https://doi.org/10.1093/bioinformatics/
btx105 - Zhang S, Zhou J, Hu H, Gong H, Chen L,
Cheng C, Zeng J (2016) A deep learning
framework for modeling structural features
of RNA-binding protein targets. Nucleic
Acids Res 44(4):e32. https://doi.org/10.
1093/nar/gkv1025 - Quang D, Xie X (2016) DanQ: a hybrid con-
volutional and recurrent deep neural network
for quantifying the function of DNA
sequences. Nucleic Acids Res 44(11):e107.
https://doi.org/10.1093/nar/gkw226 - Wang S, Sun S, Li Z, Zhang R, Xu J (2017)
Accurate de novo prediction of protein con-
tact map by ultra-deep learning model. PLoS
Comput Biol 13(1):e1005324.https://doi.
org/10.1371/journal.pcbi.1005324 - Xiong D, Zeng J, Gong H (2017) A deep
learning framework for improving long-
range residue-residue contact prediction
using a hierarchical strategy. Bioinformatics.
https://doi.org/10.1093/bioinformatics/
btx296
- Yuan Y, Shi Y, Li C, Kim J, Cai W, Han Z,
Feng DD (2016) DeepGene: an advanced
cancer type classifier based on deep learning
and somatic point mutations. BMC Bioinfor-
matics 17(Suppl 17):476.https://doi.org/
10.1186/s12859-016-1334-9 - Kraus OZ, Ba JL, Frey BJ (2016) Classifying
and segmenting microscopy images with deep
multiple instance learning. Bioinformatics 32
(12):i52–i59. https://doi.org/10.1093/bio
informatics/btw252 - Kraus OZ, Grys BT, Ba J, Chong Y, Frey BJ,
Boone C, Andrews BJ (2017) Automated
analysis of high-content microscopy data
with deep learning. Mol Syst Biol 13(4):924.
https://doi.org/10.15252/msb.20177551 - Buggenthin F, Buettner F, Hoppe PS,
Endele M, Kroiss M, Strasser M,
Schwarzfischer M, Loeffler D, Kokkaliaris
KD, Hilsenbeck O, Schroeder T, Theis FJ,
Marr C (2017) Prospective identification of
hematopoietic lineage choice by deep
learning. Nat Methods 14(4):403–406.
https://doi.org/10.1038/nmeth.4182 - Hazlett HC, Gu H, Munsell BC, Kim SH,
Styner M, Wolff JJ, Elison JT, Swanson MR,
Zhu H, Botteron KN, Collins DL, Constan-
tino JN, Dager SR, Estes AM, Evans AC,
Fonov VS, Gerig G, Kostopoulos P, McKins-
try RC, Pandey J, Paterson S, Pruett JR,
Schultz RT, Shaw DW, Zwaigenbaum L,
Piven J, IBIS Network; Clinical Sites; Data
Coordinating Center; Image Processing
Core; Statistical Analysis (2017) Early brain
development in infants at high risk for autism
spectrum disorder. Nature 542
(7641):348–351.https://doi.org/10.1038/
nature21369 - Esteva A, Kuprel B, Novoa RA, Ko J, Swetter
SM, Blau HM, Thrun S (2017)
Dermatologist-level classification of skin can-
cer with deep neural networks. Nature 542
(7639):115–118.https://doi.org/10.1038/
nature21056 - Chen Y, Li Y, Narayan R, Subramanian A, Xie
X (2016) Gene expression inference with
deep learning. Bioinformatics 32
(12):1832–1839.https://doi.org/10.1093/
bioinformatics/btw074 - Chen JH, Asch SM (2017) Machine learning
and prediction in medicine - beyond the peak
of inflated expectations. N Engl J Med 376
(26):2507–2509.https://doi.org/10.1056/
NEJMp1702071
204 Xiang-tian Yu et al.