Table 1Computational tools for multistep analyses of scRNA-seq dataTool
DescriptionRequirementsTypeInterfaceOperatingsystemPrograminglanguages ReferencesNoise reductionscLVMUses a Gaussian Process Latentvariable model to estimate thecovariance matrix associatedwith latent factors. Residualsfrom a linear mixed modelwith the covariance termrepresent de-noisedexpression estimatesRequires genes associated withthe latent factor to beidentified a priori.Normalization factors areestimated using the mediannormalization methodPackageCommandlineUnix/LinuxPython[^79]f-scLVMUse a factorial single-cell latentvariable model (f-scLVM) todissect and model single-celltranscriptome heterogeneity,thereby allowing to identifybiological drivers of cell-to-cell variability and modelconfounding factorsf-scLVM requires two input files,a gene expression file and anannotation file. The geneexpression file is a text filecontaining the normalized,log-transformed geneexpression matrix, with everyrow corresponding to a cell.The annotation file is a text filewith every row containing thename of a gene set, followedby the gene identifiersannotated to that gene setPackageCommandlineUnix/LinuxPython[^80]OEFinderUses orthogonal polynomialregression to identify geneswhose expression is associatedwith position on the C1Fluidigm integrated fluidiccircuit (IFC)Gene-specific P values areprovided to identify genesaffected by the artifactPackageCommandline/GUIUnix/Linux,Mac OS,WindowsR[81]
(continued)Applications of Single-Cell Sequencing for Multiomics 337