1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

1.10 Complex Methods 115


Fourier integral


The Fourier integral of a functionf(x)defined in the entire interval−∞<
x<∞can also be cast in complex form:


f(x)=

∫∞

−∞

C(λ)eiλxdλ. (5)

The complex Fourier integral coefficient function is given by


C(λ)= 21 π

∫∞

−∞

f(x)e−iλxdx. (6)

It is simple to show that


C(λ)=^1
2

(

A(λ)−iB(λ)

)

, (7)

whereAandBare the usual Fourier integral coefficients. The complex Fourier
integral coefficient is often called theFourier transformof the functionf(x).


Example.
Find the complex Fourier integral representation of


f(x)=

{

1 , −a<x<a,
0 , x<|a|.

The coefficient function (or transform) offis


C(λ)= 21 π

∫a

−a

e−iλxdx= 21 πe

−iλx
−iλ

∣∣

∣∣

a
−a

= 21 πe

iλa−e−iλa
iλ =

sin(λa)
πλ.

The representation offis


f(x)=

∫∞

−∞

sin(λa)
πλ

eiλxdλ, −∞<x<∞.

Of course, atx=±a,theintegralconvergesto1/2. 


This example brings out a fact about symmetry: Iff(x)is even,C(λ)is real;
iff(x)is odd,C(λ)is imaginary.
The Fourier integral or transform may be used to solve differential equations
on the interval−∞<x<∞, in much the same way that Laplace transform
is used.

Free download pdf