366 Chapter 6 Laplace Transform
L(f)=F(s)=
∫∞
0
e−stf(t)dt
L(cf(t))=cL(f(t))
L(f(t)+g(t))=L(f(t))+L(g(t))
L(f′(t))=−f( 0 )+sF(s)
L(f′′(t))=−f′( 0 )−sf( 0 )+s^2 F(s)
L(f(n)(t))=−f(n−^1 )( 0 )−sf(n−^2 )( 0 )−···−sn−^1 f( 0 )+snF(s)
L(ebtf(t))=F(s−b)
L
(∫t
0
f(t′)dt′
)
=^1 sF(s) L
( 1
tf(t)
)
=∫s∞F(s′)ds′
L(tf(t))=−dFds
Table 1 Properties of the Laplace transform
or
L
[∫t
0
f(t′)dt′
]
=^1 sL
(
f(t)
)
. (5)
Differentiation and integration with respect tosmay produce transforma-
tions of previously inaccessible functions. We need the two formulas
−de
−st
ds
=te−st,
∫∞
s
e−s′tds′=^1
t
e−st
to derive the results
L
(
tf(t)
)
=−dF(s)
ds
, L
(
1
t
f(t)
)
=
∫∞
s
F(s′)ds′. (6)
(Note that, unlessf( 0 )=0, the transform off(t)/twill not exist.) Examples
of the use of these formulas are
L
(
tsin(ωt)
)
=−dsd
(
ω
s^2 +ω^2
)
=(s (^22) +sωω (^2) ) 2 ,
L
(
sin(t)
t
)
=
∫∞
s
ds′
s′^2 + 1 =
π
2 −tan
− (^1) (s)=tan− 1
(
1
s
)
.
Significant properties of the Laplace transform are summarized in Table 1.
When a problem is solved by use of Laplace transforms, a prime difficulty
is computation of the corresponding function oft. Methods for computing
the “inverse transform”f(t)=L−^1 (F(s))include integration in the complex
plane, convolution, partial fractions (discussed in Section 6.2), and tables of