368 Chapter 6 Laplace Transform
b. f(t)=
{ 0 , 0 <t<a,
1 , a<t<b,
0 , b<t;
c. f(t)=
{t, 0 <t<a,
a, a<t.
4.TheHeaviside step functionis defined by the formula
Ha(t)=
{ 1 , t>a,
0 , t<a.
Assuminga≥0, show that the Laplace transform ofHais
L
(
Ha(t)
)
=
e−as
s.
5.Use completion of square and the shifting theorem to find the inverse trans-
form of
a. s (^2) +^12 s, b. s (^2) +s+ 2 s^1 + 2 , c. s (^2) + 21 as+b 2 , b>a.
6.Find the Laplace transform of the square-wave function
f(t)=
{ 1 , 0 <x<a,
0 , a<x< 2 a, f(x+^2 a)=f(x).
Hint: Break up the integral as shown in the following, evaluate the integrals,
and add up a geometric series:
F(s)=
∑∞
n= 0
∫ 2 (n+ 1 )a
2 na
f(t)e−stdt.
7.Use any method to find the inverse transform of the following.
a. (s−a)(^1 s−b);
c. s
2
(s^2 +ω^2 )^2 ;
b.
s
(s^2 −a^2 )^2 ;
d. (s−^1 a) 3 ; e.^1 −e
−s
s
.
8.Use any theorem or formula to find the transform of the following.
a.
1 −cos(ωt)
t ;
c. t^2 e−at;
b.
∫t
0
sin(at′)
t′ dt
′;
d.tcos(ωt); e.sinh(at)sin(ωt).
9.Find the inverse transform of these functions ofsby any method.