438 Appendix: Mathematical References
e.Integrated Bessel functionIJ(x)=∫x0J 0 (z)dzTable of Integrals
Any letter exceptxrepresents a constant. The integration constants have been
left off.
1.Rational functions
1.1∫ dx
h+kx=1
kln|h+kx|1.2∫ dx
x^2 +a^2=^1
atan−^1(
x
a)
1.3
∫ xdx
x^2 +a^2 =1
2 ln(
x^2 +a^2)
1.4
∫ dx
x^2 −a^2=^1
2 aln∣∣
∣∣x−a
x+a∣∣
∣∣
1.5
∫ xdx
x^2 −a^2 =1
2 ln∣∣
x^2 −a^2∣∣
2.Radicals
2.1∫ dx
√
x^2 +a^2=ln(
x+√
x^2 +a^2)
or sinh−^1(
x
a)
2.2
∫ xdx
√
x^2 +a^2=
√
x^2 +a^22.3
∫ dx
√
x^2 −a^2=ln(
x+√
x^2 −a^2)
(x>a)2.4
∫ xdx
√
x^2 −a^2=
√
x^2 −a^22.5
∫ dx
√
a^2 −x^2=sin−^1(
x
a)
(|x|<a)2.6
∫ xdx
√
a^2 −x^2=−
√
a^2 −x^2 (|x|<a)3.Exponentials and hyperbolic functions3.1∫
ekxdx=ekx
k