1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

438 Appendix: Mathematical References


e.Integrated Bessel function

IJ(x)=

∫x

0

J 0 (z)dz

Table of Integrals


Any letter exceptxrepresents a constant. The integration constants have been
left off.


1.Rational functions
1.1

∫ dx
h+kx=

1

kln|h+kx|

1.2

∫ dx
x^2 +a^2

=^1

a

tan−^1

(

x
a

)

1.3

∫ xdx
x^2 +a^2 =

1

2 ln

(

x^2 +a^2

)

1.4

∫ dx
x^2 −a^2

=^1

2 a

ln

∣∣

∣∣x−a
x+a

∣∣

∣∣

1.5

∫ xdx
x^2 −a^2 =

1

2 ln

∣∣

x^2 −a^2

∣∣

2.Radicals
2.1

∫ dx

x^2 +a^2

=ln

(

x+


x^2 +a^2

)

or sinh−^1

(

x
a

)

2.2

∫ xdx

x^2 +a^2

=


x^2 +a^2

2.3

∫ dx

x^2 −a^2

=ln

(

x+


x^2 −a^2

)

(x>a)

2.4

∫ xdx

x^2 −a^2

=


x^2 −a^2

2.5

∫ dx

a^2 −x^2

=sin−^1

(

x
a

)

(|x|<a)

2.6

∫ xdx

a^2 −x^2

=−


a^2 −x^2 (|x|<a)

3.Exponentials and hyperbolic functions

3.1


ekxdx=

ekx
k
Free download pdf