Chapter 2 457
c.A=(S 1 −S 0 )/a,B=S 0 .IfS 0 =S 1 ,then∂∂ut=kAfor allt.
7.φ′′+λ^2 φ=0, 0<x<a,
φ( 0 )=0,φ(a)=0.
Solution:φn=sin(λnx),λn=nπ/a(n= 1 , 2 ,...).
- The series
∑∞
n= 1
|An(t 1 )|converges.
- No.u( 0 ,t)is constant ifut( 0 ,t)=0.
Section 2.5
1.v(x,t)=T 0.
3.u(x,t)=T 0 +
∑∞
n= 1
bnsin(λnx)exp
(
−λ^2 nkt
)
,λn=( 2 n− 1 )π/ 2 a,
bn=
8 T(− 1 )n+^1
π^2 ( 2 n− 1 )^2 −
4 T 0
π( 2 n− 1 ).
- The steady-state solution isv(x)=T 0 −Tx(x− 2 a)/ 2 a^2. The transient
satisfies Eqs. (5)–(8) with
g(x)=T 0 −v(x)=Tx(x−^2 a)
2 a^2
.
7.u(x,t)=T 0 +
∑∞
n= 1
cncos(λnx)exp
(
−λ^2 nkt
)
,
λn=( 2 n− 1 )π/ 2 a, cn=
4 (T 1 −T 0 )(− 1 )n+^1
π( 2 n− 1 ).
9.u(x,t)=T 1 cos(πx/ 2 a)exp
(
−
(
π
2 a
) 2
kt
)
.
- The graph ofGin the interval 0<x< 2 ais made by reflecting the graph
ofgin the linex=a(likeanevenextension). - a.u(x,t)=T 0 +
∑∞
n= 1
bnsin(λnx)exp
(
−λ^2 nkt
)
,λn=( 2 n− 1 )π/ 2 a,
bn=
1
a
∫ 2 a
0
g(x)sin
(nπx
2 a
)
dx.